

FACULTAD DE CIENCIAS EMPRESARIALES CARRERA PROFESIONAL DE INGENIERÍA DE SISTEMAS DE INFORMACIÓN Y GESTIÓN

"INFLUENCIA DEL MODELO DEVOPS EN EL ASEGURAMIENTO DE LA CALIDAD DEL DESARROLLO DEL SOFTWARE EN LA EMPRESA ENTELGY PERÚ SAC"

Tesis para optar el título profesional de:

Ingeniero de Sistemas de Información

Presentado por:

Alexander Santos Huaraca Talavera (0000-0003-3439-5832)

Asesor:

Luis Enrique Acosta Medina (0000-0002-0477-0657)

Lima - Perú

2021

ACTA DE SUSTENTACIÓN DE TESIS

Lima, 24 de setiembre 2021

Los integrantes del Jurado de tesis:

Presidente	Luis Albero Torres Cabanillas	
Miembro 1	Jose Alberto Rodriguez Parra Feria	
Miembro 2	Wilver Auccahuasi Aiquipa	

Se reúnen para evaluar la tesis titulada: "Influencia del Modelo DevOps en el aseguramiento de la Calidad del desarrollo del software en la empresa Entelgy Perú SAC"

Presentado por el(la) bachiller. Alexander Santos Huaraca Talavera

Para optar el Título Profesional de Ingeniero de Sistemas de Información Asesorado(a) por: Luis Enrique Acosta Medina

Luego de haber evaluado el informe final de tesis y evaluado el desempeño de(I) (los) estudiantes de la carrera de **Ingeniería de Sistemas de Información y Gestión** en la sustentación, concluyen de manera unánime () por mayoría simple (X) calificar a:

Tesista:	Alexander Santos Huaraca Talavera			
Nota (en letras):	Quince			
Aprobado (X)	Aprobado - Muy buena ()	Aprobado - Sobresaliente ()	Desaprobado ()	

Los miembros del jurado firman en señal de conformidad.

Luis Albero Torres Cabanillas Presidente (a) del Jurado Luis Enrique Acosta Medina Asesor(a)

Jose Alberto Rodriguez Parra Feria Miembro 1 Wilver Auccahuasi Aiquipa Miembro 2

> T//(SII)610-6738 informes@cientifica.edu.pe cientifica.edu.pe

Dedicatoria

A Dios por ser mi guía en la vida y por haber puesto en mi camino aquellas personas que me apoyaron en el transcurso de mi camino universitario. A ti madre por apoyarme e impulsarme a concluir esta etapa universitaria, a ti padre por confiar en mí y darme el ejemplo de ser un buen profesional. A mis hermanos por su apoyo y compañía en mi vida, gracias por ser parte de este peldaño de mi vida profesional.

Agradecimientos

Agradezco a la Universidad Científica del Sur mi alma mater, gracias por el esfuerzo de brindar el servicio de educación, el cual ha servido como base para mi vida profesional. Agradezco a la empresa Entelgy Perú SAC y sus colaboradores por el apoyo y consentimiento para realizar mi trabajo de investigación, a mi asesor de tesis Acosta Medina Luis Enrique, por ser el guía en la elaboración de mi trabajo de investigación y poder compartir sus conocimientos. A los profesores que participaron en la revisión de juicio de experto, Huertas Camacho Gina Lida, Huachaca Urbina, Antonio Roberto y Hugo Eladio Chumpitaz Caycho, gracias por su tiempo y apoyo brindado. A Barrientos Riveros, Macgyver Eugenio, compañero de trabajo que me apoyo compartiendo sus conocimientos para mi trabajo de investigación.

INDICE DE CONTENIDO

Dedicatoria	3
Agradecimientos	4
INDICE DE CONTENIDO	5
Índice de tablas	6
Índice de Figuras	7
Resumen	8
Abstract	9
Introducción	10
CAPITULO I: PLANTEAMIENTO DEL PROBLEMA	14
CAPITULO II: MARCO TEORICO	20
CAPITULO III: DISEÑO METODOLÓGICO	37
CAPITULO IV: RESULTADOS	44
CAPITULO V: DISCUSION, CONCLUSIONES Y RECOMENDACIONES	65
Referencias bibliográficas	71
ANEXOS	75
Anexo 1: Matriz de consistencia	75
Anexo 2: Matriz de operacionalización	76
Anexo 3: Encuesta/instrumento de evaluación	77
Anexo 4: Validez de instrumentos por Jueces Expertos	81
Anexo 5: Constancia emitida por la institución donde se realizó la investigación	93
Anexo 6: Evidencia del envío a revista científica	94
Anexo 7: Base de datos	95

Índice de tablas

Tabla 1 : Baremo - Nivel y Rango	41	
Tabla 2 Condiciones de alfa de cronbach	42	
Tabla 3: Estadísticos de fiabilidad del Instrumento 1 (Modelo DevOops)	43	
Tabla 4: Estadísticos de fiabilidad del Instrumento 1 (Calidad del desarrollo de Software)	43	
Tabla 5 Prueba de normalidad kolmogorov- Smirnov	46	
Tabla 6: Análisis Estadístico Regresión ordinal, resumen del procesamiento de casos de las	5	
variables Modelo DevOps y Calidad del desarrollo de software	47	
Tabla 7: Análisis Regresión ordinal, información de ajuste de modelos	48	
Tabla 8: Presentación de los coeficientes del modelo DevOps y la calidad del desarrollo de	el	
software en los colaboradores de la empresa Entelgy Perú SAC.	49	
Tabla 9: Pseudo coeficiente de determinación de las variables	49	
Tabla 10: Prueba de correlación de hipótesis general (Modelo DevOps y Calidad del		
desarrollo del software)	50	
Tabla 11: Tabla cruzada Modelo DevOps*Calidad del Desarrollo del Software	51	
Tabla 12:Análisis Estadístico Regresión ordinal, resumen del procesamiento de casos de la	S	
dimensiones Cultura de trabajo y Riesgos del software	52	
Tabla 13: Análisis Regresión logística ordinal, información de ajuste de modelos	53	
Tabla 14: Presentación de los coeficientes de la cultura de trabajo del modelo DevOps y los		
riegos del software en los colaboradores de la empresa Entelgy Perú SAC.	54	
Tabla 15: Pseudo coeficiente de determinación de las variables	54	
Tabla 16: Prueba de correlación de hipótesis especifica N°1 (Cultura de trabajo y Riesgos d	lel	
software)	55	
Tabla 17: Tabla cruzada Cultura de trabajo*Riesgos del software	56	
Tabla 18: Análisis Estadístico Regresión ordinal, resumen del procesamiento de casos de la	as	
dimensiones Automatización de pruebas y Control de calidad del software	57	
Tabla 19: Análisis Estadístico Regresión logística ordinal, información de ajuste de modelo	s 58	
Tabla 20: Presentación de los coeficientes de la Automatización de pruebas y el Control de	9	
calidad del software en los colaboradores de la empresa Entelgy Perú SAC.	59	
Tabla 21:: Pseudo coeficiente de determinación de las variables	59	
Tabla 22: Prueba de correlación de hipótesis especifica N°2 (Automatización de pruebas y		
Control de calidad del software)	60	
Tabla 23: Tabla cruzada Automatización de pruebas *Control de calidad del software	61	
Tabla 24: Análisis Estadístico Regresión ordinal, resumen del procesamiento de casos de la	as	
dimensiones Monitoreo de la calidad del software y la Rentabilidad de los proyectos de		
software.	62	
Tabla 25: Análisis Estadístico Descriptivo Regresión logística ordinal, información de ajuste	е	
de modelos	63	
Tabla 26: Presentación de los coeficientes del Monitoreo de la calidad de software y la		
Rentabilidad de los proyectos de software en los colaboradores de la empresa Entelgy Per	rú	
SAC	64	
Tabla 27: Pseudo coeficiente de determinación de las variables	64	
Tabla 28: Prueba de correlación de hipótesis especifica N°3 (Monitoreo de la calidad de		
software y Rentabilidad de los proyectos de software)	65	
Tabla 29: Tabla cruzada Monitoreo de la calidad de software*Rentabilidad de los proyecto	os	
de software	66	

Índice de Figuras

Figura 1 Modelo DevOps AWS	30
Figura 2 Flujo de integración continua	33
Figura 3 Flujo Entrega continua	34
Figura 4 Barras cruzadas del modelo DevOps y la calidad del desarrollo de software	51
Figura 5 Barras cruzadas de las dimensiones Cultura de trabajo y Riegos del software	56
Figura 6 Barras cruzadas de las dimensiones Automatización de pruebas y Control de calidad	l
del software	61
Figura 7 Barras cruzadas de las dimensiones Monitoreo de la calidad de software y la	
rentabilidad de los proyectos de Software	66

*** TESIS**

UNIVERSIDAD CIENTÍFICA

Resumen

El propósito de esta investigación es determinar el grado de impacto del modelo

DevOps (MD) en el aseguramiento de la calidad del desarrollo del software (CD). El

presente trabajo está enfocado en un diseño no experimental de tipo explicativo y de

enfoque cuantitativo. El caso de estudio fue realizado sobre 60 colaboradores que están

involucrados en el flujo de desarrollo de software de la empresa Entelgy Perú SAC. La

muestra estuvo conformada por 53 colaboradores. Los instrumentos obtuvieron en la

prueba de confiabilidad un coeficiente de Alfa de Cronbach (α) de 0,814 (MD) y un (α)

de 0,726 (CD). Los resultados muestran una relación positiva moderada, con un Rho de

Spearman (0.740), siendo la prueba significativa con un pvalor=0.000 <0.05. Los

resultados de este estudio determinaron la influencia del modelo DevOps sobre la

calidad del software, la cual servirá como referencia o comprensión para los

profesionales o investigadores que laboran en esta área.

Palabras clave: DevOps, calidad del software, cultura, automatización, monitoreo

* TESIS

CIENTÍFICA

Abstract

The purpose of this research is to determine the degree of impact of the DevOps

(MD) model in the quality assurance of software development (CD). The present work is

focused on a non-experimental design of an explanatory type and a quantitative

approach. The case study was carried out on 60 employees who are involved in the

software development flow of the company Entelgy Perú SAC. The sample consisted of

53 collaborators. The instruments acquired in the reliability test had a Cronbach's Alpha

coefficient (α) of 0.814 (MD) and an (α) of 0.726 (CD). The results show a moderate

positive relationship, with a Spearman's Rho (0.740), the test being significant with a p-

value=0.000 <0.05. The results of this determined the influence of the DevOps model on

software quality, which will serve as a reference for study or understanding for

professionals or researchers working in this area.

Keywords: DevOps, software quality, culture, automation, monitoring