FACULTAD DE CIENCIAS EMPRESARIALES

“INVESTIGACIÓN DE LA VARIABILIDAD DEL PROCESO DE SECADO DE LADRILLO MAQUINADO KINGKONG TIPO IV EN LA CIUDAD DE PIURA Y SU IMPACTO EN LA CALIDAD DEL PRODUCTO”

Tesis para optar al grado académico de:
MAESTRO EN DESARROLLO DE PROYECTOS DE INNOVACIÓN Y PRODUCTO

Presentado por:
Víctor Hugo Vivanco Sandoval (0000-0003-2227-3192)

Asesor:
Pablo V. Urquizo (0000-0002-6601-3045)

Lima - Perú
2019
ANEXO 13
ACTA DE SUSTENTACIÓN DE TESIS

Siendo las 18:45 horas del día Viernes 20 de diciembre de 2019 en la sala de conferencias se reunieron los miembros del Jurado:

Presidente Mg. Acosta Ticse, Deysi Lizbeth
Miembro 1 Mg. Pinto Díaz, Giovana Giancarla
Miembro 2 Mg. Poblite Bentes, Julio Cesar

Para evaluar la tesis titulada: “INVESTIGACIÓN DE LA VARIABILIDAD DEL PROCESO DE SECADO DE LADRILLO MAQUINADO KING KONG TIPO IV EN LA CIUDAD DE PIURA, Y EL IMPACTO, EN LA CALIDAD DEL PRODUCTO Y LA CONSTRUCCIÓN DE VIVIENDAS”, presentado por el(a) Bach. Vivanco Sandoval Víctor Hugo para optar el grado de Maestro en Desarrollo de Proyectos de Innovación y Producto.

Terminada la sustentación, el Jurado luego de deliberar concluyen de manera unánime () por mayoría simple (X) que la tesis es:

Aprobado
Aprobado - Muy buena ()
Aprobado - Sobresaliente ()
Desaprobado ()

Calificándola con nota de: 14 en letras: (ATORCE)

En fe de lo actuado los miembros de Jurado suscriben la presente Acta en señal de conformidad.

[Signaturas]

Presidente del Jurado
Mg. Acosta Ticse, Deysi Lizbeth

Miembro del Jurado
Mg. Pinto Díaz, Giovana Giancarla

[Signaturas]

Miembro del Jurado
Mg. Poblite Bentes, Julio Cesar

PABLO URQUIZO
Asesor(os)
Dedicatoria

“Esta tesis se la dedico primero a Dios y la virgen María, por darme la fortaleza y paciencia en este trabajo.
A mi esposa Verónica, mis hijos Mariana y Emmanuel y mi madre María, quien siempre nos acompaña y a todos aquellos que aportaron para lograr este trabajo”
Agradecimientos

A la Universidad Científica del Sur del Perú.
Al Dr. Pablo Urquizo, por su apoyo en la asesoría de este trabajo, como parte de FUNIBER.
A mi amigo, Dr. Miguel Castro S. de la Universidad de Piura, por haberme guiado y asistido en la investigación en la ciudad de Piura.
<table>
<thead>
<tr>
<th>Índice general</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice general</td>
<td>4</td>
</tr>
<tr>
<td>Índice general</td>
<td>5</td>
</tr>
<tr>
<td>Índice de imágenes</td>
<td>7</td>
</tr>
<tr>
<td>Índice de tablas</td>
<td>9</td>
</tr>
<tr>
<td>Índice de ensayos</td>
<td>9</td>
</tr>
<tr>
<td>Índice de anexos</td>
<td>10</td>
</tr>
<tr>
<td>Resumen</td>
<td>11</td>
</tr>
<tr>
<td>Abstract</td>
<td>12</td>
</tr>
<tr>
<td>Introducción</td>
<td>13</td>
</tr>
<tr>
<td>CAPITULO I: PLANTEAMIENTO DEL PROBLEMA</td>
<td>16</td>
</tr>
<tr>
<td>1.1 Descripción de la realidad problemática</td>
<td>16</td>
</tr>
<tr>
<td>1.2 Formulación del problema</td>
<td>19</td>
</tr>
<tr>
<td>1.2.1 Problema general</td>
<td>21</td>
</tr>
<tr>
<td>1.2.2 Problemas específicos</td>
<td>21</td>
</tr>
<tr>
<td>1.3 Justificación de la investigación</td>
<td>21</td>
</tr>
<tr>
<td>1.4 Limitaciones de la investigación</td>
<td>23</td>
</tr>
<tr>
<td>1.5 Viabilidad de la investigación</td>
<td>24</td>
</tr>
<tr>
<td>CAPITULO II: MARCO TEORICO</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Antecedentes de la investigación</td>
<td>25</td>
</tr>
<tr>
<td>2.2 Bases teóricas</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1 Definición de Ladrillo</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1.1 Materia Prima:</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.2 Manufactura:</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.3 Designación:</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.4 Ladrillo:</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1.5 Clasificación:</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1.6 Consideraciones:</td>
<td>31</td>
</tr>
<tr>
<td>2.2.1.7 Variciones</td>
<td>32</td>
</tr>
<tr>
<td>2.3. Objetivos de la investigación</td>
<td>33</td>
</tr>
<tr>
<td>2.3.1 Objetivo general</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2 Objetivos específicos</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Formulación de Hipótesis</td>
<td>33</td>
</tr>
<tr>
<td>2.4.1 Hipótesis general</td>
<td>33</td>
</tr>
<tr>
<td>2.4.2 Hipótesis específicas</td>
<td>33</td>
</tr>
</tbody>
</table>
CAPITULO III: DISEÑO METODOLÓGICO

3.1 Diseño de la investigación

3.2 Tipo

3.3 Enfoque

3.4 Población

3.5 Muestra

3.6 Operacionalización de variables

3.7 Técnicas para la recolección de datos

3.8 Técnica para el procesamiento y análisis de datos

3.9 Aspectos éticos

CAPITULO IV: RESULTADOS

CAPITULO V: DISCUSION, CONCLUSIONES Y RECOMENDACIONES

5.1 Discusión

5.2 Conclusiones

5.3 Recomendaciones

Referencias bibliográficas

Bibliografía

Anexos

Anexo 1: Matriz de consistencia

Anexo 2: Matriz de operacionalización

Anexo 3: Equipo Datalogger

Anexo 4: Tablas resumen de análisis de resultados

Anexo 5: Muestreo de datos de Datalogger

Anexo 6: Material Fotográfico
Índice de imágenes

Ilustración 1 Ladrillo artesanal KingKong ... 16
Ilustración 2 Ladrillo KingKong 18 huecos maquinado ... 17
Ilustración 3 Área de secado natural en pampa ... 18
Ilustración 4 Proceso de secado de ladrillo artesanal en pampa .. 18
Ilustración 5 Prueba calidad de ladrillo KingKong. (fuente: Fondo Mi vivienda) 20
Ilustración 6: Secadero de ladrillo bajo el método natural .. 40
Ilustración 7: Secadero de ladrillo en pampa abierta ... 40
Ilustración 8: Apilamiento de ladrillo KingKong Tipo I en 2 filas 41
Ilustración 9: Apilamiento de ladrillo Tipo I KingKong, en 2 filias 41
Ilustración 10: Apilamiento de ladrillo Tipo II, crudo KingKong, en 2 filas para pruebas 41
Ilustración 11: Apilamiento de ladrillo Tipo II crudo KingKong en 2 filas para pruebas 41
Ilustración 12: Sensor de almacenamiento de temperatura y humedad, en pampa 42
Ilustración 13 Dispositivo de medición velocidad de viento .. 42
Ilustración 14: Disposición de dispositivos muestreo de datos. (fuente: elaboración propia) 43
Ilustración 15: Canteras de arcilla carretera Piura Paita. (fuente: Elaboración propia) 45
Ilustración 16: Canteras de arcilla Carretera Piura Sullana (fuente: Elaboración Propia) 45
Ilustración 17: Canteras de arcilla carretera Piura Paita. (fuente: Elaboración propia) 45
Ilustración 18: Prototipo inicial de medición de velocidad de viendo y temperatura 48
Ilustración 19: Dispositivo móvil, para verificación de la toma de datos 49
Ilustración 20: Dispositivo fuente de toma de datos ... 49
Ilustración 21: Dispositivo fuente de toma de datos en galpón ... 49
Ilustración 22: Sensor de medición de temperatura del ladrillo en el proceso de secado 49
Ilustración 23: Simulación de data proceso de monitoreo de secado en PC 79
Ilustración 24: Monitoreo de datos en dispositivo ... 79
Ilustración 25: Ladrillo crudo en producción ... 87
Ilustración 26: Ladrillo crudo listo para traslado ... 87
Ilustración 27: Galpones de secado de ladrillo ... 87
Ilustración 28: Ladrillo crudo en Horno .. 87
Ilustración 29: Monitoreo de secado de ladrillo bajo Malla .. 87
Ilustración 30: Secado de ladrillo Apilamiento Tipo I .. 87
Ilustración 31: Sistema de monitoreo de data ... 87
Ilustración 32: Cobertura para sombra en proceso de secado de ladrillo 87
Ilustración 33: Secado Apilamiento II .. 88
Índice de tablas

Tabla 1 Requisitos: Variación de dimensiones, alabeo, compresión y densidad............... 31
Tabla 2: Porcentaje de descarte por Apilamiento y secado de ladrillo crudo. 52
Tabla 3 Porcentaje de descarte por tipo de apilamiento y exposición al sol............... 52
Tabla 4. Resumen de secado bajo el sol. (Fuente. Elaboración propia.)............................ 57
Tabla 5: Resumen del análisis de varianza de dos factores con varias muestras 56
Tabla 6: Resumen de los datos de secado bajo la malla.. 58
Tabla 7: Análisis de varianza de dos factores con varias muestras por grupo.............. 58
Tabla 8 Tabla resumen secado bajo galpones. ... 60
Tabla 9 Análisis de varianza de dos factores con varias muestras. 60
Tabla 10: Efectos en el secado de ladrillo a través de los distintos tipos de sombra. 62
Tabla 11. Análisis de varianza en secado de ladrillo bajo distintos tipos de sombra...... 63

Índice de ensayos

Ensayo 1: Informe de ensayo de Proveedor de arcilla tipo amarilla ISL....................... 37
Ensayo 2: Informe de ensayo de arcilla negra - Palacios. Fuente proveedor.................. 38
Ensayo 3: Informe ensayo de Proveedor de arcilla Zapata. Fuente proveedor................ 39
Ensayo 4: Seguimiento de humedad (H1), proceso secado de ladrillo en pampa............. 64
Ensayo 5: Seguimiento de distribución de temperatura en secado de ladrillo. 64
Ensayo 6: Comportamiento de la reducción de humedad (H) en proceso de secado....... 64
Ensayo 7: Gráfico distribución de Temperatura, proceso de secado. 64
Ensayo 8: H3 Gráfico distribución de humedad en el proceso de secado de ladrillo. 65
Ensayo 9: Gráfico distribución de temperatura en el proceso de secado...................... 65
Ensayo 10: Distribución de velocidad del viento en ensayos. .. 65
Índice de anexos

Anexo 1: Matriz de consistencia .. 76
Anexo 2: Matriz de operacionalización .. 77
Anexo 3: Equipo de medida de velocidad del viento, humedad relativa y temperatura 78
Anexo 4: Tablas resumen de resultados utilizadas para el análisis .. 79
Anexo 5: Muestreo de datos de Datalogger ... 82
Anexo 6: Material Fotográfico .. 86
Resumen

El propósito de la tesis consiste en evaluar la variabilidad, en el proceso de secado de ladrillo al aire libre y el efecto en las características del ladrillo KingKong dieciocho huecos, producidos por el sector formal en Piura.

La investigación se realizó en base a un análisis estadístico tomando como referencia una de las principales fábricas debidamente formalizada de la ciudad.

Se analizó las características del proceso de secado en relación con el método de Apilamiento del producto y el impacto que se tiene en la producción según variables de sensación térmica, humedad y fuerza del viento, así como los efectos del secado bajo sombra, cobertura de malla y exposición al sol en forma directa.

Se identificó que la mejor opción de secado se encuentra a través de la utilización de galpones abiertos, tomando en cuenta la mejora en la protección de las áreas donde circula mayor corriente de aire lo cual afecta el proceso.

Se diseñó un sistema de monitoreo de indicadores de velocidad de viento, temperatura y humedad que es visualizado a través de un dispositivo móvil, que permite obtener la información del proceso de secado del ladrillo.
Abstract

The purpose of the thesis is to evaluate the variability in the outdoor brick drying process and the effect on the characteristics of the 18-hole KingKong brick, produced by the formal sector in Piura city.

The investigation will be carried out from a statistical analysis taking as a reference one of the main factories duly formalized in the city.

The characteristics of the drying process were analyzed with the Stacking method of product and impact in the production according to variables of temperature, humidity and wind speed, effects of drying under shade, covering mesh and direct solar exposition.

It was identified that the best drying option is through the use of open sheds, taking into account the improvement the protection of areas where the greatest air current circulates, which affects the process.

A monitoring system for indicators of wind speed, temperature and humidity was designed that is displayed through a mobile device, which allows information on the brick drying process to be obtained.
Introducción

La utilización de los ladrillos maquinados a base de arcilla ofrece mayores ventajas en relación con algunos procesos de edificaciones existentes en el mercado, tales como concreto, drywall, y edificaciones prefabricadas, debido a sus ventajas en el aislamiento térmico y acústico, la propiedad de soportar el calor extremo y el uso estético que puede tener.

La Demanda Potencial en vivienda en la ciudad de Piura se estima a partir del total de núcleos propietarios por mejoras y/o ampliaciones siendo esta de 61,427 unidades familiares. La Demanda Efectiva, por mejoras sería de 14,999 núcleos familiares y la demanda efectiva por ampliaciones alcanzaría los 6,801 núcleos familiares. (fuente: fondo Mivivienda, enlace web: https://drive.google.com/open?id=1eKILU8RD8CMAYbrT91PeZDFkANxWANtC.)

Según estudios del fondo Mivivienda, la cantidad promedio que conforman los integrantes del núcleo familiar es de 3.2.

La demanda potencial identificada ha permitido el incremento de la comercialización de materiales de construcción, sin embargo, la albañilería, la cual se encarga de construir o edificar utilizando materiales como piedras, ladrillos, yeso, concreto o materiales parecidos, presenta deficiencias, por el mal uso de productos, cuyo proceso de fabricación no ha sido el óptimo.

De acuerdo con especialistas del Fondo Mivivienda es frecuente que los proyectos se construyan sin contar con licencia de obra, planos o especialistas en construcción, incluso en algunos casos, son utilizados materiales defectuosos, obteniendo como resultado una construcción con fallas estructurales y altamente vulnerables frente a un sismo o fenómenos lluviosos, como los producidos en el 2017 en Piura. Francisco Aramayo, miembro de Capeco, considera que en nuestro país se construye, entre 110,000 y 120,000 nuevas construcciones (formales e informales) al año, de las cuales casi la mitad de las viviendas
son informales, dado que no tienen terreno saneado, licencia municipal, supervisión técnica, declaración del predio, entre otros motivos.

En la información estadística del censo “INEI del 2017”, se muestra que, del total de casas censadas, las paredes externas utilizan como materiales principales el ladrillo o bloque de cemento en un 55.8%, adobe 27.9%, madera 9.5%. Asimismo, el 3.1% utiliza triplay, calamina y estera, el 2.1% utiliza quincha, el 1.0% construye con piedra y barro y el 0.6% piedra con cal o cemento.

Siendo el ladrillo una parte importante en la construcción de viviendas debemos buscar que el producto sea eficiente, sobre todo en el ladrillo maquinado, logrando de esta manera, seguridad de las construcciones a través del modelo de albañilería estructural confinada. En este caso el ladrillo esta visto como elemento separador de ambientes que debe cumplir con su normativa y no como elementos que soportan carga como las columnas que son imprescindibles en las construcciones.

El proceso de secado de ladrillo es una de las etapas esenciales en la fabricación de ladrillo maquinado o semi-industrial. Las principales fábricas de la Región Piura realizan al aire libre dicho proceso y sin un monitoreo y control adecuado de temperatura, manipulación y tiempo, lo cual origina algunos inconvenientes, como mermas por resquebrajamiento y bajo nivel de resistencia del producto.

La tecnificación del proceso de secado en las plantas de fabricación de ladrillo puede tener una inversión de cerca de US$3Millones con tecnología de proveedores Colombianos o Brasileños y el doble de inversión con tecnología Alemana.

La tecnología de automatización del secado de ladrillo se basa en la construcción de hornos continuos, a través de estanterías móviles que circulan en forma automática a en un circuito de rieles.
En la Región Piura la tecnología utilizada es la del secado en pampa con actividad manual de colocación de ladrillo al aire libre, siendo el tema ambiental uno de los principales problemas para lograr un secado uniforme.

La identificación de los indicadores de variación en la etapa del secado del producto en pampa y los parámetros de control de calidad son el objetivo principal planteado en la investigación.
CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

El capítulo primero, tiene como objetivo identificar los aspectos generales más importantes del proceso utilizado para el secado de ladrillo maquinado en las plantas de fabricación de la ciudad de Piura y como inciden en el producto final a obtener.

1.1 Descripción de la realidad problemática

La fabricación de ladrillos en nuestro país, genera más de Un mil seiscientos millones de soles por año (equivalente a cuatrocientos noventa millones de dólares americanos), comentó el presidente de la ALACEP “Asociación de ladrilleras de Cerámicos Peruanas”, se destacó la producción del año de la industria ladrillera (9,5 Millones TM, consumiendo Lima un promedio de 10,000 TM diarias. A la fecha existen cerca de 2,000 ladrilleras y solo un 20% es formal y el otro 80% informal. (fuente; Artículo Construcción Latinoamericana - 28 septiembre 2017).

Según estudio realizado por la DIREPRO Piura, solo el 2011 la producción de las ladrilleras artesanales de la Región alcanzó los 7294.36 Millares al mes, dependiendo básicamente de la tecnología del horno que emplean (Ilustración 1; Ilustración 2).

Ilustración 1 Ladrillo artesanal KingKong.
(fuente; elaboración propia)
La edificación de albañilería suele variar en relación con las técnicas utilizadas y sobre todo al tipo de ladrillo de arcilla elegido. Incluso son distintas en relación con la zona geográfica por la característica del material utilizado como insumo, los medios de selección, el moldeado o extrusión, la reducción de la humedad en el ladrillo y la quema del producto en el horno. De acuerdo al tipo de fabricación de ladrillo, se clasifica en **artesanal**, siendo el moldeado y cocido rudimentario y **no artesanal**, el cual comprende un proceso de moldeado en forma tecnificada, en cuanto a la quema en el horno puede ser rudimentaria ó especializada (moldeo y cocción del ladrillo en forma mecanizada).

Con respecto al proceso de secado de ladrillo (Ilustración 3 y 4) de las principales fábricas de la Región Piura se realiza al aire libre y sin un monitoreo y control adecuado de temperatura, manipulación y tiempo, por parte de algunas empresas, lo cual origina algunos inconvenientes, como es el incremento de las mermas por resquebrajamiento y reducción del nivel de resistencia del producto (1). El ladrillo tipo KingKong y Pandereta, representan el 70% de la producción y ventas, sin embargo, se ha identificado un incremento de las mermas, por resquebrajamiento, de dicho producto de un 30%, en la etapa de secado, esto de acuerdo a estadísticas del Ministerio de vivienda. El ladrillo maquinado en crudo es colocado en un área techada, expuesto al aire
libre y cubierto con esteras, produciéndose un secado natural a través de su leve exposición al sol. Esta situación origina retrasos en la atención de las compras por adelantado de los clientes y el incremento en los costos de fabricación: por pérdida de materia prima en la manipulación, gastos de combustible en el traslado, mano de obra para carga y descarga, choque térmico demasiado grande e incremento del tiempo de producción, dicho costo es trasladado al precio de venta del producto.

Ilustración 3 Área de secado natural en pampa.

Ilustración 4 Proceso de secado de ladrillo artesanal en pampa.
1.2 Formulación del problema

Teniendo como antecedente en la Región Piura, los últimos fenómenos lluviosos del 2017 que lograron afectar notablemente la infraestructura de la zona y la concurrencia de algunos movimientos telúricos. Se considera importante asegurar la calidad de las viviendas de los sectores económicos C y D, las cuales no son siempre de las mejores características, tomando en cuenta los materiales utilizados en su proceso constructivo. En este sentido los materiales deben ser los más adecuados y de acceso a todo nivel, con el fin de asegurar una construcción óptima y prevenir desastres mayores.

A inicios del 2017 durante el fenómeno del Niño, en Piura se calcularon 21,412 viviendas destruidas y 83,957 viviendas afectadas, a esto se sumaban los daños causados en la infraestructura vial con cerca de 7,099 Km de caminos rurales destruidos, 182,691 Km afectados, 345 km de carretera destruida y 27 puentes destruidos, según datos obtenidos de INDECI a través de la Dirección de Políticas, Planes y Evaluación Sub-Dirección de Aplicaciones Estadísticas (Boletín estadístico virtual de la gestión reactiva -Tabla resumen de daños en viviendas y locales públicos - Nº 07-año 4- jul 2017 pp. 14-15).

En la mayoría de los casos la precaria construcción de los pobladores y el uso de materiales de construcción no adecuados y optar por la autoconstrucción sin ninguna asistencia técnica para edificar las viviendas, fueron motivos para que las lluvias hicieran mayores daños a las edificaciones. Asimismo, parte de la responsabilidad estuvo en manos de las autoridades de la zona, dado que los Gobiernos locales, como son los municipios y siendo organismos del sector público, tienen la labor de realizar una buena evaluación de las construcciones y la zonificación de las mismas, motivo por el cual este evento mostró la ineficiencia en el control por parte de las autoridades, no solo desde las
viviendas sino desde la ausencia de un control adecuado en los materiales utilizados y en la ingeniería de construcción de las viviendas, si esto se hubiera cumplido el impacto hubiera sido menor, es por ello que el Ministerio de Vivienda a través de los programas sociales, hoy en día está verificando y certificando la calidad de los materiales.

![Ilustración 5 Prueba calidad de ladrillo KingKong. (fuente: Fondo Mi vivienda).](image)

El proceso de secado de ladrillo de las principales fábricas de la Región Piura, se realiza al aire libre y sin un proceso de monitoreo y control adecuado de temperatura, manipulación y tiempo, lo cual origina algunos inconvenientes, como mermas y bajo nivel de resistencia del producto.

El promedio de comercialización de ladrillo maquinado de las principales marcas en el sector formal de Piura (Lark, Itale, Fortes y Tallán), es de 2,638 millares mensuales. El ladrillo tipo KingKong, representa el 50% de la producción y ventas, sin embargo, en entrevista con el Ing. Agustín Campos, especialista del Área de PRODUCE del GOBIERNO REGIONAL DE PIURA, se informó que se ha identificado un incremento de las mermas por resquebrajamiento, de dicho producto de un 30%, en la etapa de secado.
Durante el proceso el ladrillo maquinado en crudo es colocado en un área techada, expuesto al aire libre y cubierto con esteras, produciéndose un secado natural a través de su leve exposición al sol. Esta situación origina retrasos en la atención de las compras por adelantado de los clientes y el incremento en los costos de fabricación: por pérdida de materia prima en la manipulación, gastos de combustible en el traslado, mano de obra para carga y descarga, choque térmico demasiado grande e incremento del tiempo de producción.

1.2.1 Problema general

El incremento de los rechazos por mermas de resquebrajamiento de ladrillo maquinado King-Kong tipo IV en su etapa de crudo, durante el proceso de secado natural, contribuye al incumplimiento de las Normas Técnicas Peruanas 331.017 revisada el año 2015; las cuales establecen las condiciones mínimas que debe cumplir el producto, en este caso el ladrillo fabricado por las Ladrilleras Formales.

1.2.2 Problemas específicos

Dentro de los problemas específicos de relevancia para el proceso eficiente de producción de ladrillo KingKong Tipo IV, se puede destacar:

a. ¿Contribuye al incremento de los rechazos por mermas de resquebrajamiento de ladrillo maquinado KingKong tipo IV, la ausencia de un sistema de trazabilidad de los componentes de la mezcla de arcilla considerada en la fabricación del producto?

b. ¿Origina problemas en el secado, la ausencia de un proceso eficiente de monitoreo de variables críticas: Temperatura, humedad, viento y exposición al sol, en el secado natural de la masa de ladrillo?

c. ¿Establecer protocolos de trabajo en el secado de ladrillo maquinado KingKong Tipo IV, permiten una disminución de la mermas y mejoras en el impacto ambiental?

1.3 Justificación de la investigación

En la actualidad Piura cuenta con una oferta total de 5,256 viviendas en 21 proyectos inmobiliarios ubicados en Piura, Castilla, Catacaos, 26 de octubre y Chulucanas en la
provincia de Morropón. De estas viviendas, 4,790 corresponden al Nuevo Crédito Mivivienda (NCMV) y 466 al programa TECHO PROPIO (TP) en la modalidad Adquisición de Vivienda Nueva (AVN).

En el caso de las viviendas verdes a la fecha se han certificado 7 proyectos que significan una oferta superior a las 4 mil viviendas. Estas corresponden a Los Parques de Piura 2 (con 240 viviendas), Oasis de Piura (con 2352 viviendas), Garden 360 (con 145 viviendas), Alameda Santa Ana (con 144 viviendas), Edificio Multifamiliar I Los Parques del Chipe (con 60 viviendas), Proyecto Céntrika Condominio (con 436 viviendas), y el Conjunto Habitacional Monte Verde II (con 697 viviendas). Según el FMV (Fondo Mivivienda), los productos que ofrecen son favorecidos con el Bono del Buen Pagador (BBP) cuyo monto puede ser hasta S/ 17,700 permitiendo al beneficiario cumplir con su aporte inicial. Los intereses presentan tasas fijas en moneda nacional, posibilidades de amortizaciones por adelantado e incluso contar con 20 años de periodo de financiamiento. Los Inmuebles ecosostenibles también cuentan con detalles atractivos, desde el punto de vista financiero con el Bono Mivivienda Verde, tasas de 3% y 4% del monto a financiar y tasa preferencial desde 6.99%. Además las edificaciones han innovado en el ahorro energético que permite a los hogares ahorros promedio de 30% al mes en los consumos de agua y luz.

Techo Propio, según su página web (www.mivivienda.gob.pe) en la modalidad de Adquisición de Vivienda Nueva otorga un Bono Familiar Habitacional de S/ 33,600 para las familias elegibles.

Este boom en la oferta de viviendas en la Región, ha originado una creciente demanda por los materiales de construcción, lo que incluye a los ladrillos de arcilla cocida, que deben cumplir los requisitos de calidad mencionadas en normativa técnica de albañilería
y que los especialistas técnicos del FMV validan personalmente en las pruebas de ensayo que se realizan en forma inopinada en las zonas de acción.

En la ciudad de Piura de acuerdo con lo comentado por los supervisores del FMV, el ladrillo KingKong tipo IV 18 huecos es uno de los más utilizados para la edificación de muros en viviendas, sin embargo, su principal problema radica en no cumplir con la norma técnica al momento de realizar el muestreo en los programas de techo propio, motivo por el cual los constructores se ven perjudicados en sus pagos, así como las comercializadoras y fabricantes de ladrillo.

Los aportes de la investigación a realizar deben permitir entre sus objetivos:

- Brindar una propuesta en la mejora del proceso de secado en pampa, del ladrillo de arcilla KingKong 18 huecos.
- Difundir y transferir nuevas metodologías del proceso de secado de ladrillo al micro y pequeño empresario del sector, dado que son los beneficiarios directos.
- Reducir las mermas en el proceso de producción de los fabricantes de ladrillo, sobre todo en la etapa de secado, elevando la calidad del producto.

1.4 Limitaciones de la investigación

Este estudio está limitado al proceso de secado de ladrillo para la producción de ladrillo maquinado en las empresas de la ciudad de Piura.

El proceso de secado en ambiente natural, es similar en las Fábricas de ladrillo maquinado de la ciudad de Piura, las mismas que se encuentran ubicadas a la salida de la carretera de Piura a Sullana y carretera Piura a Paita.

La investigación experimental se limita a comprobar la viabilidad de las mejoras y recomendaciones que se propondrán en el proceso de secado del ladrillo tipo KingKong en estado crudo, del proceso productivo del ladrillo de arcilla en Piura; evaluando el
impacto de la reducción en mermas por resquebrajamiento y fisuras, en relación con la producción habitual y sin monitoreo de la zona.

La propuesta no pretende variar significativamente los costos de producción y lograr una reducción de costos eficiente en la etapa de secado, optimizando los márgenes.

A través de la investigación, se tomará como referencia el cumplimiento de los estándares exigidos por el Fondo Mivivienda, principalmente con el ladrillo KingKong, cuya demanda es mucho mayor, siendo utilizado en la mayor parte de la construcción de viviendas.

1.5 Viabilidad de la investigación

La confiabilidad de la investigación viene dada por la garantía de los laboratorios donde se realizarán los ensayos, los cuales serán de preferencia aquellos con la autorización respectiva. Para los demás datos medidos en campo la confiabilidad será garantizada por la definición adecuada del equipo y medios utilizados para la investigación. El Laboratorio de Ingeniería Civil de la Universidad de Piura estará asistiendo en el proyecto, en relación con la calidad de materiales. En cuanto a los modelos de simulación del proceso se cuenta con el Laboratorio de Mecánica, de la Universidad de Piura, para la realización de los ensayos respectivos.
CAPITULO II: MARCO TEORICO

2.1 Antecedentes de la investigación

El incremento de déficit habitacional en nuestra Región Piura y el proceso de reconstrucción iniciado debido a los desastres originados por el Fenómeno del Niño Costero el 2017, motivaron el interés en el desarrollo de la investigación, para optimizar el proceso de secado del ladrillo tipo KingKong, producido por las principales fábricas de ladrillo maquinado en Piura, cuyo propósito es asegurar la eficiencia del producto y disminuir las mermas originadas en las plantas de proceso en esta etapa, la cual es considerada como crítica para que la producción pase al proceso de cocción de ladrillo y cumpla con los estándares de la norma técnica respectiva.

El desarrollo de la investigación pretende:

- Identificar, el porcentaje de incremento de las mermas por fisuras, durante la exposición natural del ladrillo, tipo KingKong, al sol por lote de producción.
- Establecer un sistema de trazabilidad de la selección de insumos para la fabricación del ladrillo y el desarrollo de una simulación por computadora de un modelo del proceso de secado óptimo para un determinado lote de producción, acorde a las normas técnicas del sector.

Como antecedentes de estudios en el proceso de secado del ladrillo crudo, KingKong tipo IV, en la Región Piura, no se han encontrado procesos en los cuales se hayan realizado con el rigor científico, la caracterización de los insumos y su efecto en el proceso de secado de ladrillo por exposición natural al medio ambiente, motivo por el cual se ha optado por tomar como referencia algunos ensayos y estudios científicos, realizados en nuestro país y en Latinoamérica.

Según opinión de (Diana Carolina, 2018) en el artículo citado de publicación científica, se resume la técnica de uso del hidrómetro para experimentación de granulometría para
identificar la capacidad de las arcillas en el proceso de fabricación del ladrillo utilizado para construcción. Dicho artículo muestra la realización del monitoreo porcentual de asimilación de agua, crisparción de cocimiento y resistencia mecánica al alabeo como resultado de la propiedad de vitrificación de los materiales arcillosos evaluados. Se verificó que algunos compuestos arcillosos destacan por contar con minerales filosilicatos (caolinita y moscovita) en su composición. Asimismo, contienen no mucha presencia de compuestos de azufre y carbonatos. La información muestra que los altos contenidos de potasio y hierro (muestras de moscovita) en materiales arcillosos, al parecer tienen impactos positivos en características tecnológicas donde se ha realizado el seguimiento a los cerámicos. Los exámenes de caracterización de caliza y feldespatos contribuyeron a identificar la calidad del material y tomar en cuenta algunas ventajas tecnológicas observadas en el proceso cerámico acorde con los resultados obtenidos.

- En el informe técnico elaborado en el proyecto de investigación denominado “Diseño de un prototipo de quemador y horno de ladrillo, para combustible sólido multipropósito con controladores automáticos con reducción en la emisión de gases a través del reciclaje de los mismos – Convenio 021-FINCyT-FIDEKOM-2012”

Se describe el proceso de producción de las plantas artesanales de fabricación de ladrillo en la zona de Piura y se muestra el proceso de secado que se realiza, dicha información nos permite evaluar las deficiencias que se tienen en la producción artesanal de ladrillo para viviendas la misma que no cumple con las normas técnicas.

El conocimiento de la clasificación del tipo de material de construcción utilizado es de suma importancia ya que esto permitirá garantizar el uso adecuado y la calidad de la edificación. Según tamaño, se denominan Ladrillos (aquellos que pueden ser manipulados y unidos con una mano) y Bloques (cuando por su peso y tamaño se tiene que emplear ambas manos). Internacionalmente, las unidades se
clasifican por el porcentaje de perforaciones (alveolos o huecos) que tienen en su superficie y por la disposición que éstos tengan. Se describe la clasificación de los tipos de arcilla utilizadas como materia prima para la producción de ladrillos, identificándose a las mejores arcillas, aquellas que cuentan con un 33% de arena y limo, siendo importante el uso de la arena para mitigar el riesgo de contracción por secado de la arcilla (San Bartolomé, 1994, pp.105-112)

Así mismo las características del tipo de ladrillo utilizado juegan un rol muy importante en el proceso constructivo. La inestabilidad de las características de los ladrillos KingKong-18 huecos que son puestos a la venta en los principales establecimientos comerciales de Piura son evaluadas por Seminario (2013) en la tesis de pregrado del Programa Académico de Ing. Civil quien indica que:

En base a un muestreo estadístico, realiza una evaluación de 5 proveedores que lideran en la ciudad de Piura la comercialización de este producto. Se realiza un monitoreo de las propiedades de variabilidad dimensional, alabeo y caracterización del producto (alabeo, porcentaje de vacíos, absorción eflorescencia y resistencia a la compresión). Las conclusiones del estudio muestran diferencias entre los resultados, entre las unidades de igual o diferente marca y Centro comercial. El estudio concluye que la diferencia se nota en los altos indicadores de variación de las características principales, lo cual origina incumplimiento en las mínimas propiedades técnicas mencionadas en la Norma Peruana, en relación con el ladrillo de 18 huecos comercializado como industrial en la ciudad, parte de nuestro estudio validará esta conclusión en la fabricación del ladrillo en la etapa de crudo y su proceso de secado en ambiente natural (pp. 76-77).

- En la tesis de grado mayo 2000, presentada para optar al título de Ingeniera Mecánico de Corporación Universitaria Tecnológica de Bolívar Facultad de Ingeniería Mecánica
Cartagena de Indias D.T. y C. la tesis denominada “Diseño de un sistema de secado artificial para la producción de la ladrillera La Victoria”

https://drive.google.com/file/d/1cDz848pdTOJxf-gysctYDscYNfSm9RWx/view?usp=sharing

página 60 y 61, se comenta sobre el proceso de secado de ladrillo en ambiente natural, se describen los beneficios del secado natural en relación con los bajos costos de su puesta en funcionamiento y el bajo consumo de energía.

Un proceso lento y las diferencias de temperatura en el día y la noche son las mayores dificultades del secado natural, dada su dependencia de los cambios climáticos, su lentitud y el requerir una superficie importante en el lugar del proceso. El análisis de esta investigación permite establecer la prioridad de estudio de algunas variables y su cuantificación para la muestra.

- En la tesis de pre-grado denominada “Diseño del proyecto para la implementación de una fábrica productora de ladrillo en la ciudad de Azogues”, página 170, desarrollada por Juan Fernando Sacoto Romo:

 https://dspace.ups.edu.ec/bitstream/123456789/5700/1/UPS-CT002797.pdf, del año 2013, se toma en cuenta el conocimiento de las tecnologías en el proceso de secado.

- En cuanto a las Normas técnicas de referencia (INDECOPI, “NTP399.613-2005”, & 399.621-2004”, 2006), permitirán establecer la línea base de la investigación sobre la cual la producción del ladrillo tipo KingKong Tipo IV, deberá cumplir los estándares de calidad y la importancia de la producción de este en la etapa de secado, para que el producto logre cumplir con los parámetros previstos, al final de su producción.
• Según el documento “Manual de Sistemas de Secado na Industria de Cerámica
ermelha. SCHWOB, M. R. V. et al. Río de Janeiro: INT/MCTIC, 2016. 42p. ISBN 978-85-99465-13-4”, en dicho documento se describe el proceso productivo de la industria del ladrillo, en la etapa de secado, el cual puede ser térmico o mecánico. Se describe la importancia que tiene el secado en el producto final y en la reducción de mermas de producción y eficiencia. Cabe señalar que la investigación que se realiza en dicho documento permitirá realizar una evaluación del tipo de secado del producto, considerando que un inadecuado proceso, estará ligado a una gran cantidad de problemas en las áreas de: “Mecánica de fluidos, química, fenómenos de superficie, de estructura de sólidos, así como a cuestiones de transferencia de calor y de masa”.

2.2 Bases teóricas

2.2.1 Definición de Ladrillo

De acuerdo con la NTP 331.017, INDECOPI COMISION DE REGLAMENTOS TECNICOS Y COMERCIALES establece la terminología y definiciones a considerar para una mejor comprensión del proceso de fabricación de ladrillo y su reglamentación.
2.2.1.1 Materia Prima:

Arcilla. Es una substancia mineral, empapada en agua, impermeable y plástico formada principalmente por silicato alumínico.

Esquisto arcilloso. Es la roca clástica de grano fino, sedimentada y consolidada y no metamorfizada, con un clivaje muy marcado que presenta la misma propiedad de laminación.

Arcilla superficial. Aquella que no ha sido consolidada, estratificada y se encuentra en la superficie.

2.2.1.2 Manufactura:

Ladrillo confeccionado a mano, es producido mediate procesos, en su mayoría manuales, principalmente el moldeado y en otros casos con equipos rudimentarios los cuales extruyen bajo poca presión, la mezcla de arcilla. El proceso de moldeado incluye el uso de arena y agua que permita reducir el riesgo que la mezcla de arcilla se fije a los moldes o gaveras, este tipo de producto presenta muchas anomalías de unidad a unidad.

Ladrillo Maquinado, obtenido a través del uso de maquinarias que realizan la labor de amasado, moldeado y prensado de la arcilla, este tipo de ladrillo se caracteriza por su uniformidad.

2.2.1.3 Designación:

El ladrillo de acuerdo con sus características es designado por su tipo, sección (macizo, perforado o tubular) y dimensiones (largo-cm x ancho-cm y alto-cm).

2.2.1.4 Ladrillo:

Unidad de albañilería producida a base de arcilla moldeada, extruida o prensada en forma de poliedra rectangular y quemada en un horno.
Ladrillo macizo. Es el ladrillo que no tiene orificios o tiene un volumen total de huecos inferior al 25% del volumen total de la pieza, sus medidas no son perfectas.

Ladrillo con perforaciones. Es el producto cocido con perforaciones en una de sus caras y cuyo volumen total de huecos se encuentra por encima del 25% y 45% del volumen total de la pieza.

Ladrillo Pandereta. Es el ladrillo con huecos paralelos y son utilizados para los techos de las construcciones.

2.2.1.5 Clasificación:

La clasificación del ladrillo se realiza en 5 tipos, según sus propiedades.

Tipo I.- Resistencia y durabilidad muy bajas. Adecuado en construcciones de albañilería con exigencias mínimas de servicio.

Tipo II.- Resistencia y durabilidad bajas. Adecuado en construcciones de albañilería con exigencias moderadas de servicio.

Tipo III.- Resistencia y durabilidad media. Adecuado en construcciones de albañilería de exigencias generales.

Tipo IV.- Resistencia y durabilidad altas. Adecuado en construcciones de albañilería en exigencias de servicio riguroso.

Tipo V.- Resistencia y durabilidad muy altas. Adecuado en construcciones de albañilería en exigencias de servicio especializado y riguroso.

2.2.1.6 Consideraciones:

Los ladrillos de arcilla Tipo tres, cuatro y cinco, deben cumplir con las características siguientes, sin embargo, para la unidad de ladrillo Tipo uno y dos, las exigencias indicadas se consideran recomendaciones:
• El ladrillo, no debe presentar materia extraña en su superficie o en el interior, como piedras pequeñas, conchuelas o partículas de residuos de naturaleza calcárea.
• El ladrillo debe estar bien horneado, de color homogéneo y carente de toda estructura cristalina. Si es golpeado en uno de sus lados, podrá emitir un sonido tipo metálico.
• No puede contener fracturas, fisuras, grietas o defectos parecidos, que minimicen el tiempo de durabilidad y/o resistencia.
• No tendrá alta permeabilidad, ni marcas o restos blanquecinos de procedencia salitrosa u otro tipo.

2.2.1.7 Variaciones

Variaciones de dimensiones, alabeo, resistencia a la compresión y densidad. Los Métodos de ensayo, deberá cumplir con las especificaciones indicadas en la Tabla 1, Variación de dimensiones.

Tabla 1 Requisitos: Variación de dimensiones, alabeo, compresión y densidad (fuente: Indecopi)

<table>
<thead>
<tr>
<th>TIPO</th>
<th>VARIACIÓN DE LA DIMENSIÓN (1) (máx. en %)</th>
<th>ALABEO (2) (máx. en mm)</th>
<th>RESISTENCIA A LA COMPRESIÓN (minima daN/cm2)</th>
<th>DENSIDAD (mínimo cn g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hasta 10 cm</td>
<td>Hasta 15 cm</td>
<td>Más de 15 cm</td>
<td>Sin límite</td>
</tr>
<tr>
<td>I Alternativo</td>
<td>± 6</td>
<td>± 6</td>
<td>± 4</td>
<td>10</td>
</tr>
<tr>
<td>II Alternativo</td>
<td>± 7</td>
<td>± 6</td>
<td>± 4</td>
<td>8</td>
</tr>
<tr>
<td>III</td>
<td>± 5</td>
<td>± 4</td>
<td>± 3</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>± 4</td>
<td>± 3</td>
<td>± 2</td>
<td>4</td>
</tr>
<tr>
<td>V</td>
<td>± 3</td>
<td>± 2</td>
<td>± 1</td>
<td>2</td>
</tr>
</tbody>
</table>

NOTA 1: La variación de la dimensión se aplica para todas y cada una de las dimensiones del ladrillo y está referida a las dimensiones especificadas.

NOTA 2: El alabeo se aplica para concavidad o convexidad.
2.3. Objetivos de la investigación

Se han planteado los siguientes objetivos:

2.3.1 Objetivo general

Estudiar durante el proceso de secado natural de ladrillo maquinado KingKong tipo IV las mermas originadas por resquebrajamientos.

2.3.2 Objetivos específicos

1. Definir un sistema de trazabilidad de los componentes que son parte de la masa utilizada en la fabricación de ladrillo KingKong Tipo IV”.

2. Obtener un diseño eficiente a escala virtual, del proceso de monitoreo de variables críticas (temperatura, humedad, viento y exposición al sol) en el secado natural de ladrillo KingKong Tipo IV.

3. Implementar protocolos de trabajo en el proceso de secado de ladrillo maquinadoKingKong Tipo IV, que permitan una disminución de la merma por resquebrajamiento y reducción del impacto ambiental por manipuleo del producto.

2.4 Formulación de Hipótesis

2.4.1 Hipótesis general

La hipótesis plantea que durante el proceso de secado natural del ladrillo maquinado KingKong tipo IV, en su etapa de crudo, se incrementan las mermas de producción, debido a la ausencia de un proceso eficiente de monitoreo del producto controlando los indicadores de calidad, con aprovechamiento energético.

2.4.2 Hipótesis específicas

La definición de un sistema de trazabilidad eficiente permitirá definir los mejores sitios de procedencia de materia prima acordes a los requerimientos de producción que permitan reducir las mermas por resquebrajamiento del ladrillo KingKong Tipo IV.
La definición del diseño a escala virtual del proceso de secado se ajusta a las variables críticas de producción definidas en el modelo (temperatura, humedad, viento y exposición al sol).

La definición de los protocolos de trabajo en el secado de ladrillo contribuye a la disminución de mermas en la producción de ladrillo maquinado, minimizando un impacto ambiental negativo.
CAPITULO III: DISEÑO METODOLÓGICO

3.1 Diseño de la investigación

La investigación se centra en analizar los inconvenientes originados en el proceso de secado, a través de la identificación de los puntos críticos en el secado natural del producto y el diseño de una propuesta que permita asegurar la reducción de las mermas.

La investigación se realizará, en 3 etapas de análisis, la primera, que consiste en la evaluación de los insumos (arcilla, arena y agua) que conforman la mezcla antes de la extrusión, la segunda el análisis del ladrillo tipo KingKong, en la etapa de formado, determinando su resistencia, la última etapa, contempla el análisis del producto en el proceso de secado natural, realizando un seguimiento de la evolución del producto en el proceso natural de secado. La investigación permitirá validar la Hipótesis planteada, a través de la identificación de los puntos críticos del proceso de secado del producto, logrando una propuesta de solución que permita reducir los niveles de mermas en la etapa de secado, mejorando la calidad del producto, ladrillo tipo KingKong de acuerdo con la norma técnica vigente, NORMA TÉCNICA PERUANA 2003, revisada el 2015 NTP 331.017, asegurando la trazabilidad de la producción. La variable dependiente, está definida por las características del producto final, como es el ladrillo y las variables independientes, estarán dadas, por las características de la materia prima que conforma el producto en la etapa de crudo y el proceso de secado que se realiza.

La investigación se ha dividido en 4 etapas:

- **Etapa 1.** En dicha etapa se realiza el análisis de la fórmula de preparación del ladrillo en su etapa de crudo, evaluando la calidad de los insumos utilizados, según las características señaladas en la ficha técnica del producto (Se adjuntan informes de los ensayos de los diferentes tipos de arcillas utilizados. (Ensayos 1, 2 y 3, considerando
que mientras los valores de composición de sales solubles en la arcilla estén más cercanos a exceder el factor de 1, dichos elementos podrían afectar el producto final y no cumplir con las normas técnicas respectivas.

Se han evaluado tres tipos de formulación a base de arcillas las que se denominarán: Tipo I, II y III, las cuales presentarán la siguiente composición, considerando el proveedor:

Tipo I: 2 cucharones de amarilla de Palacios, 2 cucharones de amarilla de ISL (Industrial Santa Lucia), 2 cucharones de roja de Ramírez y 2 cucharones de merma.

Tipo II: 2 cucharones de amarilla de Palacios, 2 cucharones de amarilla de ISL (Industrial Santa Lucia), 2 cucharones de roja de Ramírez, 1 cucharón de Zapata y 1 cucharón de merma.

Tipo III: 2 cucharones de amarilla de Palacios, 1 cucharón de amarilla de ISL (Industrial Santa Lucia), 2 cucharones de roja de Ramírez, 2 cucharones de Zapata y 1 cucharón de merma.

Los proveedores de arcilla tienen sus canteras ubicadas en la carretera Piura – Paita. La cantera del proveedor denominado “Palacios” se encuentra en el Km 10 carretera Paita, “Ramirez” se encuentra en el Km 5 e Industrial Santa Lucia (ISL) se encuentra ubicado en el km 7. (Se adjuntan ensayos realizados según el tipo de arcilla)

Nota: Cada cucharón es de $3m^3$ del cargador frontal.
Ensayo 1: Informe de ensayo de Proveedor de arcilla tipo amarilla. Industrial Santa Lucia.
Fuente: Industrial Santa Lucia.
Ensayo 2: Informe de ensayo de arcilla negra - Palacios. Fuente proveedor.
Ensayo 3: Informe ensayo de Proveedor de arcilla Zapata. Fuente proveedor.
• **Etapa 2.** Dicha etapa considera el análisis del proceso de secado de ladrillo en forma natural, el cual incluye el análisis del canteo y toma de datos de la curva de temperatura y humedad del producto, antes de ser ingresado al horno de quema. Para este caso se ha tomado en consideración tres tipos de ambientes en el proceso de secado: La primera, secado del producto bajo la sombra obtenida debajo de los galpones; La segunda, secado del producto bajo la sombra obtenida debajo de una malla Rachel y la última, el secado obtenido bajo los efectos directos del sol.

Ilustración 6: Secadero de ladrillo bajo el método natural.

Ilustración 7: Secadero de ladrillo en pampa abierta
Etapa 3. En esta etapa se hace un análisis del tipo de apilamiento realizado con los ladrillos para evaluar su efecto en el secado (Ver Ilustración 8, 9, 10 y 11).

En esta etapa se analizó dos tipos de forma de apilamiento, considerando dos filas de ladrillos y mayor a 2 filas. Cabe señalar que, en la experimentación por apilamiento mayor a 3 filas, el peso no es soportado por la última fila que aún está fresca, originando una merma, la cual es considerable, no por rajadura sino por deformación del producto.
• **Etapa 4**, En esta etapa, las pruebas consideran la medición de la velocidad del viento, humedad y temperatura de secado observando de forma cualitativa sus efectos en la calidad del secado y el nivel de merma en el proceso. (Ilustración 12)

![Imagen de sensor de almacenamiento de temperatura y humedad en pampa.](image12)

Ilustración 12: Sensor de almacenamiento de temperatura y humedad, en pampa.

![Imagen de dispositivo de medición de velocidad del viento.](image13)

Ilustración 13: Dispositivo de medición velocidad de viento.
La prueba de hipótesis se efectúa realizando la comparación de los resultados de los ensayos obtenidos de un ladrillo tipo KingKong, crudo secado bajo el método natural y otro obtenido a través de un proceso controlado de secado.

3.2. Tipo

La investigación es de tipo *experimental*, considerando que el análisis se realiza, dentro de un ambiente que permite el monitoreo de las variables, es decir la identificación de los elementos que intervienen en el procedimiento de fabricación del producto, para ello se ha identificado el tipo de variable a analizar dentro del proceso de la investigación.

Variable Independiente: Definida como la característica o propiedad que se define como la causa de las variaciones en el proceso de secado de ladrillo en pampa y se encuentra conformada por el tipo de mezcla utilizada para la producción de ladrillo, compuesta por arcilla, arena y agua y la ubicación del secadero natural, manipulación del producto y niveles de temperatura del medio ambiente.

Variable Dependiente: Aquella que recoge las variaciones que son originadas al manipular la variable independiente. Aquello que se debe observar, evaluar y lo que
facilitará la información que debe ser considerada, esto es la eficiencia del proceso de secado de ladrillo crudo, en pampa, para ello se definirá la variable que se va a medir, en este caso el número de ladrillos resquebrajados, para lo cual se han determinado dos factores, apilamiento y tipo de arcilla.

Se considerarán 3 tipos de arcilla en 2 modos de apilamiento, obteniendo como resultado, 6 formas de secado de ladrillo por apilamiento. Por cada uno se podrá realizar hasta 5 repeticiones, contando con 30 muestras las mismas que se trabajarán bajo 3 formas de secado (bajo sol, malla o galpón), obteniendo 90 ensayos. En las pruebas, se tomará en cuenta el factor aleatorio y se evaluará si se puede reducir en las pruebas el efecto de factores no controlados como tamaño, cantidad de ladrillos, tiempo de secado en pampa.

Dado el grado de importancia en el uso de datos, es de tipo cualitativo, puesto que los resultados, permitirán describir los rasgos característicos del ladrillo en la etapa de secado y su disponibilidad. En cuanto al personal involucrado en el trabajo de campo estará conformado por:

- Un equipo mayor a 3 operarios que realizarán la toma de muestra de arcilla en 3 de las principales canteras de arcilla de donde extraen el insumo las empresas de la zona (Ilustración 15 y 16).
- 2 operarios que realizarán las pruebas de medición en campo de niveles de temperatura en el cual se seca el producto.
- 2 operarios que realizarán la toma de muestra 2 veces a la semana del ladrillo que se resquebraja, por secado en forma natural.

Los materiales que serán utilizados en la investigación serán:
- Un teléfono celular para grabar las fases de toma de muestra de la arena, arcilla y agua.
- Material de escritorio, como son: lapicero, cuaderno, computadora e impresora. Asimismo, recipiente de vidrio para guardar las muestras de arena y arcilla.
- Se utilizará un vehículo para el traslado (camioneta).
- Las muestras se analizarán en el Área de pruebas de materiales de la Universidad de Piura.

Los medios utilizados para lograr los objetivos específicos están establecidos por la NTP 331.017, la cual muestra los componentes del ladrillo cocido y los ladrillos empleados en la construcción, indicando que el ladrillo KingKong, Tipo IV, debe ser resistente y de durabilidad alta, lo cual lo hace viable para procesos de construcción de albañilería en circunstancias de un servicio muy exigente.
Requisitos

La determinación de la formulación adecuada, de los insumos, para la producción de ladrillo KingKong Tipo IV en la etapa de crudo que permita reducir las mermas por resquebrajamientos en el proceso de secado del producto en ambiente natural, serán validadas con las condiciones descritas en las tablas de la NTP (Tabla I), en las pruebas de laboratorio que se realizarán en el área de suelos de la Univ. de Piura.

3.3 Enfoque

El enfoque de la metodología ha sido determinado en relación de la naturaleza del problema y las limitaciones propias del ambiente que afectan las variables definidas, tales como las características de la mezcla del crudo del ladrillo, el tipo de arcilla utilizada o los distintos ambientes que pueden incidir en el resultado de la investigación. Estas restricciones del medio ambiente pueden estar sujetas a cambios bruscos de temperatura, velocidad del viento y tipo de manipuleo del producto. Al tratarse de variables múltiples origina que los resultados sean solo aplicados al entorno del estudio y no pueden ser generalizados a otras investigaciones.

3.4 Población

Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) conceptualiza a la estadística (citados, 1980) como: “El valor simplificado, calculado en base a una muestra de observaciones, consideradas como estimaciones de parámetro de una población; esto es una función de valores de muestra”.

En nuestro análisis la población materia de estudio, es el ladrillo maquinado KingKong tipo IV, que está aprobado para su uso en los programas del Fondo MiVivienda el cual es producido solo por las Ladrilleras formales y de las cuales se ha identificado a la empresa Cerámicos Piura cuyos accionistas (GRUPO QUIROGA– GRUPO ORO NEGRO – GRUPO
SAN ANTONIO) son los principales distribuidores de materiales de Construcción en la Región.

3.5 Muestra

Es un subconjunto de casos o individuos de una población. El presente trabajo, la muestra es de 250 ladrillos King Kong por pila 1, pila 2 y pila 3 que dan un total de 750 ladrillos que se ponen a secar por ensayo. Para lograr que las muestras sean aleatorias se tomaron a la mitad de la jornada de trabajo de la extrusora de ladrillos.

3.6 Operacionalización de variables

Dentro de la definición de la operacionalización de variables se ha definido como análisis, aquellas que se relacionan con la eficiencia del proceso de secado de ladrillo en ambiente natural y cuyo producto es utilizado en un procedimiento de construcción.

Las variables identificadas han sido seleccionadas por sus características de ser medibles, dado que serán consideradas como los indicadores de la investigación.

Las variables deben estar rigurosamente validadas y relacionadas a lo que la Hipótesis planteada resolverá en el análisis dentro de la investigación.

Una vez definidos los indicadores se procede a realizar la definición operacional de la misma para realizar su medición de forma empírica y cuantitativa.

Las variables definidas en el presente estudio son:

- Porcentaje de ladrillos rajados
- Tipo de arcilla
- Tipo de sombreado
- Tipo de apilamiento
- Temperatura
- Humedad relativa y velocidad del viento
3.7 Técnicas para la recolección de datos

El tipo de recolección de datos ha sido definido cuantitativamente, para ello se ha diseñado y desarrollado algunos dispositivos en coordinación con profesionales del Área de IME (Laboratorio de Mecánica Eléctrica-Universidad de Piura), contando con la ayuda del personal de la empresa y de un equipo datalogger desarrollado para la tesis que consiste en registrar los indicadores de temperatura, velocidad y humedad del aire para 3 puntos distintos. Todos estos datos se graban en una Memoria con fecha y hora (Ilustraciones 17, 18, 19, 20, 21 y 22).

Ilustración 17: Prototipo inicial de medición de velocidad de viento y temperatura.
Ilustración 18: Prototipo final medición velocidad de viento y temperatura.
Ilustración 19: Dispositivo móvil, para verificación de la toma de datos.

Ilustración 20: Dispositivo fuente de toma de datos.

Ilustración 21: Dispositivo fuente de toma de datos en galpón.

Ilustración 22: Sensor de medición de temperatura del ladrillo en el proceso de secado.
3.8 Metodología para procesamiento e interpretación de datos

El estudio de la Varianza (Anova), permite realizar una evaluación del efecto de algunos de los factores sobre la distribución media de la variable definida. Se utiliza el análisis de la Varianza (Anova), la cual es considerada como la metodología más destacada en la Inferencia Estadística.

Implementado por R.A. FISHER en (1930), el Anova es considerada como base en el análisis de indicadores que son relacionados con múltiples factores, además de ser considerada en la evaluación de modelos de regresión lineal y diseños experimentales.

El objetivo básico del Anova (Análisis de varianza) busca separar las variaciones totales muestreadas en los datos obtenidos en la experimentación, los cuales estarán relacionados con los resultados del análisis y sus posibles correlaciones, además de una parte sobrante que después se cotejará con las primeras.

Se considera oportuno separar la variación total que muestran parte de los resultados a consecuencia de la variable investigada y una sobrante que toma el efecto de aquellos elementos aleatorios que permitan lograr equiparar a las partes, a través de una prueba F, “Tabla Resumen del Anova”, lo cual permite analizar la importancia de la investigación.

3.9 Aspectos éticos

Los aspectos éticos de la investigación han sido tomados en cuenta en relación con el uso del producto final (ladrillo KingKong Tipo IV) por parte del consumidor, en este caso es importante señalar que el proceso de secado es una etapa necesaria para que el producto posteriormente, luego de un proceso de quema, pueda llegar al mercado.

El desarrollo de la investigación no tiene efectos negativos para el medio ambiente y su desarrollo cumple con las normas establecidas en el medio. El personal de campo y especialistas de apoyo cumplen con las condiciones adecuadas para la ejecución de la
investigación, estableciendo incluso medidas de mitigación en el proceso de mezclado de los materiales para reducir el número de partículas en suspensión en el aire.
CAPÍTULO IV: RESULTADOS

De las pruebas realizadas en el secado de los ladrillos KingKong, se obtuvieron los siguientes resultados:

- Se realizaron 90 ensayos en total, los datos obtenidos se encuentran registrados en la Tabla 2 y Tabla 3, mostrados como porcentaje de ladrillos descartados, por apilamiento Tipo I y Tipo II. Los datos de la tabla 3, han sido registrados, en Gráficos para visualizar la tendencia del proceso de descarte de ladrillo.

<table>
<thead>
<tr>
<th>Apilamiento</th>
<th>Sol</th>
<th>Malla</th>
<th>Galpones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tipo I</td>
<td>Tipo II</td>
<td>Tipo III</td>
</tr>
<tr>
<td>Apilamiento I</td>
<td>3.33%</td>
<td>2.36%</td>
<td>3.11%</td>
</tr>
<tr>
<td>Apilamiento I</td>
<td>6.94%</td>
<td>5.36%</td>
<td>4.45%</td>
</tr>
<tr>
<td>Apilamiento I</td>
<td>5.62%</td>
<td>6.12%</td>
<td>7.37%</td>
</tr>
<tr>
<td>Apilamiento I</td>
<td>5.26%</td>
<td>5.65%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Apilamiento I</td>
<td>5.26%</td>
<td>6.40%</td>
<td>4.49%</td>
</tr>
<tr>
<td>Apilamiento II</td>
<td>4.31%</td>
<td>3.80%</td>
<td>4.96%</td>
</tr>
<tr>
<td>Apilamiento II</td>
<td>5.18%</td>
<td>5.62%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Apilamiento II</td>
<td>7.11%</td>
<td>5.65%</td>
<td>6.33%</td>
</tr>
<tr>
<td>Apilamiento II</td>
<td>3.42%</td>
<td>3.02%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Apilamiento II</td>
<td>3.56%</td>
<td>3.93%</td>
<td>3.49%</td>
</tr>
</tbody>
</table>

Tabla 2: Porcentaje de descarte por Apilamiento y secado de ladrillo crudo (fuente: Elaboración propia).

<table>
<thead>
<tr>
<th>Apilamiento</th>
<th>Sol</th>
<th>Malla</th>
<th>Galpones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sol -G1</td>
<td>Sol-G2</td>
<td>Malla - G4</td>
</tr>
<tr>
<td>Apilamiento 1</td>
<td>3.33%</td>
<td>2.36%</td>
<td>3.11%</td>
</tr>
<tr>
<td>Apilamiento 1</td>
<td>6.94%</td>
<td>5.36%</td>
<td>4.45%</td>
</tr>
<tr>
<td>Apilamiento 1</td>
<td>5.62%</td>
<td>6.12%</td>
<td>7.37%</td>
</tr>
<tr>
<td>Apilamiento 1</td>
<td>5.26%</td>
<td>5.65%</td>
<td>5.26%</td>
</tr>
<tr>
<td>Apilamiento 1</td>
<td>5.26%</td>
<td>6.40%</td>
<td>4.49%</td>
</tr>
<tr>
<td>Apilamiento 2</td>
<td>4.31%</td>
<td>3.80%</td>
<td>4.96%</td>
</tr>
<tr>
<td>Apilamiento 2</td>
<td>5.18%</td>
<td>5.62%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Apilamiento 2</td>
<td>7.11%</td>
<td>5.65%</td>
<td>6.33%</td>
</tr>
<tr>
<td>Apilamiento 2</td>
<td>3.42%</td>
<td>3.02%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Apilamiento 2</td>
<td>3.56%</td>
<td>3.93%</td>
<td>3.49%</td>
</tr>
</tbody>
</table>

Tabla 3: Porcentaje de descarte por tipo de apilamiento y forma de exposición al sol. (fuente: Elaboración propia)
Gráfico 1: Tipo de Apilamiento I bajo Sol, 5 ensayos realizados (fuente: Elaboración propia)

Gráfico 2: Tipo de Apilamiento II bajo Sol, 5 ensayos realizados (fuente: Elaboración propia)

En los gráficos 1 y 2, por tipo de Apilamiento I y II, con secado de ladrillo bajo el sol, en los grupos 1, 2 y 3, se observa mayor porcentaje de descarte, con relación a los demás ensayos realizados y graficados. El ensayo número 3, tiene mayor descarte que en las otras pruebas del mismo gráfico, sin embargo, la variación por grupo bajo el secado en sol en el número de descarte no es significativa.
En los gráficos 3 y 4, por tipo de Apilamiento I y II, con secado de ladrillo bajo Malla, en los grupos 4, 5 y 6, se observa mayor porcentaje de descarte, con relación a los demás ensayos realizados y graficados. El ensayo número 3 del grupo 5 muestra el pico más alto de descarte con 4.96, sin embargo, no es relevante con relación al gráfico 2.
En los gráficos 5 y 6 las variaciones en el descarte bajo el método de secado con Galpones son mínimas, por lo que se muestra como un método eficiente para el secado del ladrillo.

Se adjunta Anexo VII, en el cual se muestran las operaciones que llevan a las tablas de resultados cuyos valores son mostrados en el resumen de las Tablas 2 y 3.
Como parte del análisis que se ha realizado, se evaluó la eficiencia del secado de ladrillo al sol y el tipo de apilamiento y su efecto en el procedimiento de secado en pampa bajo sol, obteniéndose los siguientes resultados.

Tabla 4: Resumen de secado bajo el sol. (Fuente: Elaboración propia)

<table>
<thead>
<tr>
<th>Apilamiento</th>
<th>Tipo I (G1)</th>
<th>Tipo II (G2)</th>
<th>Tipo III (G3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.33%</td>
<td>2.36%</td>
<td>3.11%</td>
</tr>
<tr>
<td></td>
<td>6.54%</td>
<td>5.66%</td>
<td>4.45%</td>
</tr>
<tr>
<td>2</td>
<td>5.62%</td>
<td>6.12%</td>
<td>7.37%</td>
</tr>
<tr>
<td></td>
<td>5.26%</td>
<td>5.65%</td>
<td>5.26%</td>
</tr>
<tr>
<td></td>
<td>5.26%</td>
<td>6.40%</td>
<td>4.49%</td>
</tr>
<tr>
<td></td>
<td>4.31%</td>
<td>3.80%</td>
<td>4.56%</td>
</tr>
<tr>
<td>3</td>
<td>5.18%</td>
<td>5.62%</td>
<td>4.35%</td>
</tr>
<tr>
<td></td>
<td>7.11%</td>
<td>5.65%</td>
<td>5.33%</td>
</tr>
<tr>
<td></td>
<td>3.42%</td>
<td>3.02%</td>
<td>4.35%</td>
</tr>
<tr>
<td>4</td>
<td>3.56%</td>
<td>3.93%</td>
<td>3.49%</td>
</tr>
</tbody>
</table>

A estos datos se les ha realizado un examen de varianza de 2 factores con distintas muestras por grupo. Los resultados se muestran a continuación (Tabla 5).

Tabla 5: Resumen del estudio de varianza de 2 factores con varias muestras por grupo. (Fuente: Elaboración propia)

<table>
<thead>
<tr>
<th>RESUMEN</th>
<th>G2</th>
<th>G3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuenta</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Suma</td>
<td>0.2589</td>
<td>0.2468</td>
<td>0.5058</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.0518</td>
<td>0.0494</td>
<td>0.0506</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Cuenta	5	5	10
Suma	0.2261	0.2346	0.4607
Promedio	0.0410	0.0470	0.0445
Varianza	0.0001	0.0001	0.0001

Total			
Cuenta	10	10	
Suma	0.4790	0.4817	
Promedio	0.0479	0.0482	
Varianza	0.0002	0.0002	
Comentarios:

La probabilidad no es menor a 0.05 por lo que no es apreciable una diferencia en los promedios.
Secado bajo malla

La tabla siguiente, resume los datos de secado bajo la malla:

Tabla 6: Resumen de los datos de secado bajo la malla

<table>
<thead>
<tr>
<th>Apilamiento 1: dos filas</th>
<th>Tipo I</th>
<th>Malla</th>
<th>Tipo II</th>
<th>Tipo III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G4</td>
<td>G5</td>
<td>G6</td>
<td></td>
</tr>
<tr>
<td>1.28%</td>
<td>6.25%</td>
<td>0.46%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.83%</td>
<td>2.02%</td>
<td>4.86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.29%</td>
<td>2.98%</td>
<td>6.82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.43%</td>
<td>0.80%</td>
<td>2.83%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.02%</td>
<td>5.26%</td>
<td>2.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.38%</td>
<td>1.87%</td>
<td>4.86%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apilamiento de a 2:3 filas</th>
<th>Tipo I</th>
<th>Malla</th>
<th>Tipo II</th>
<th>Tipo III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G5</td>
<td>G6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.40%</td>
<td>4.04%</td>
<td>1.82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.68%</td>
<td>4.96%</td>
<td>3.08%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.38%</td>
<td>3.11%</td>
<td>3.15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.59%</td>
<td>1.87%</td>
<td>1.80%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A estos datos se les ha realizado un estudio de varianza de 2 factores con diferentes muestras por grupo. El resultado se muestra a continuación.

Tabla 7: Estudio de varianza de 2 factores con algunas muestras por grupo

<table>
<thead>
<tr>
<th>RESUMEN</th>
<th>G5</th>
<th>G6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuenta</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Suma</td>
<td>0.1731</td>
<td>0.1697</td>
<td>0.3428</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.0346</td>
<td>0.0339</td>
<td>0.0343</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.0005</td>
<td>0.0006</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Cuenta	5	5	10
Suma	0.1584	0.1469	0.3053
Promedio	0.0317	0.0294	0.0305
Varianza	0.0002	0.0002	0.0002

Total			
Cuenta	10	10	
Suma	0.3316	0.3166	
Promedio	0.0332	0.0317	
Varianza	0.0003	0.0004	
Comentarios:

La probabilidad no es menor a 0.05 por lo que no es apreciable una diferencia en los promedios.

<table>
<thead>
<tr>
<th>Origen de las variaciones</th>
<th>Suma de cuadrados</th>
<th>Grados de libertad</th>
<th>Promedio de los cuadrados</th>
<th>F</th>
<th>Probabilidad de F</th>
<th>Valor crítico para F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
<td>0.000070</td>
<td>1</td>
<td>0.000070</td>
<td>0.1912</td>
<td>0.667763</td>
<td>4.493998</td>
</tr>
<tr>
<td>Columnas</td>
<td>0.000011</td>
<td>1</td>
<td>0.000011</td>
<td>0.0503</td>
<td>0.863890</td>
<td>4.493998</td>
</tr>
<tr>
<td>Interacción</td>
<td>0.000003</td>
<td>1</td>
<td>0.000003</td>
<td>0.0091</td>
<td>0.925193</td>
<td>4.493998</td>
</tr>
<tr>
<td>Dentro del grupo</td>
<td>0.005894</td>
<td>16</td>
<td>0.000368</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.005979</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Secado en galpones

A continuación, se muestra la tabla resumen de los datos de secado bajo galpones:

Tabla 8 Tabla resumen secado bajo galpones.

<table>
<thead>
<tr>
<th></th>
<th>Tipo I</th>
<th>Galpones</th>
<th>Tipo III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G7</td>
<td>G8</td>
<td>G9</td>
</tr>
<tr>
<td>Apilamiento 1: dos filas</td>
<td>1.70%</td>
<td>2.64%</td>
<td>1.69%</td>
</tr>
<tr>
<td></td>
<td>2.47%</td>
<td>2.06%</td>
<td>1.26%</td>
</tr>
<tr>
<td></td>
<td>1.67%</td>
<td>2.15%</td>
<td>3.70%</td>
</tr>
<tr>
<td></td>
<td>2.41%</td>
<td>1.70%</td>
<td>2.04%</td>
</tr>
<tr>
<td></td>
<td>1.67%</td>
<td>1.30%</td>
<td>2.02%</td>
</tr>
<tr>
<td></td>
<td>1.69%</td>
<td>1.27%</td>
<td>1.69%</td>
</tr>
<tr>
<td></td>
<td>2.15%</td>
<td>1.81%</td>
<td>2.11%</td>
</tr>
<tr>
<td>Apilamiento 2: 3 filas</td>
<td>2.09%</td>
<td>2.53%</td>
<td>2.52%</td>
</tr>
<tr>
<td></td>
<td>1.71%</td>
<td>2.63%</td>
<td>1.79%</td>
</tr>
<tr>
<td></td>
<td>2.22%</td>
<td>2.11%</td>
<td>1.27%</td>
</tr>
</tbody>
</table>

A estos datos se les ha realizado un estudio de varianza de 2 factores con algunas muestras en cada grupo.

Los detalles se informan a continuación.

Tabla 9 Análisis de varianza de 2 factores con varias muestras.

<table>
<thead>
<tr>
<th>RESUMEN</th>
<th>G8</th>
<th>G9</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuenta</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Suma</td>
<td>0.0985</td>
<td>0.1071</td>
<td>0.2056</td>
</tr>
<tr>
<td>Promedio</td>
<td>0.0197</td>
<td>0.0214</td>
<td>0.0206</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.0000</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Cuenta	5	5	10
Suma	0.1035	0.0938	0.1973
Promedio	0.0207	0.0188	0.0197
Varianza	0.0000	0.0000	0.0000

Total

Cuenta	10	10
Suma	0.2020	0.2009
Promedio	0.0202	0.0201
Varianza	0.0000	0.0001
Comentarios:

La probabilidad no es menor a 0.05 por lo que no es apreciable una diferencia en los promedios.
Diferencia entre distintos tipos de sombra

Se ha estudiado el efecto en el secado de ladrillo, bajo el sol y en los distintos tipos de sombra por malla o galpones, para observar si hay influencia de esta en la merma por resquebrajaduras de los ladrillos. En la tabla 10 se observa en la primera columna los porcentajes de merma durante el secado de ladrillo bajo el sol. La segunda y tercera columna muestra el porcentaje de merma durante el secado con malla y en galpones respectivamente.

Tabla 10: Efectos en el secado de ladrillo a través de los distintos tipos de sombra. (Fuente. Elaboración propia)

<table>
<thead>
<tr>
<th>Sol</th>
<th>Malla</th>
<th>Galpones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33%</td>
<td>1.28%</td>
<td>1.70%</td>
</tr>
<tr>
<td>6.94%</td>
<td>7.83%</td>
<td>2.47%</td>
</tr>
<tr>
<td>5.62%</td>
<td>3.29%</td>
<td>1.67%</td>
</tr>
<tr>
<td>5.26%</td>
<td>2.43%</td>
<td>2.41%</td>
</tr>
<tr>
<td>5.26%</td>
<td>6.02%</td>
<td>1.67%</td>
</tr>
<tr>
<td>4.31%</td>
<td>1.38%</td>
<td>1.69%</td>
</tr>
<tr>
<td>5.18%</td>
<td>4.40%</td>
<td>2.15%</td>
</tr>
<tr>
<td>7.11%</td>
<td>2.68%</td>
<td>2.09%</td>
</tr>
<tr>
<td>3.42%</td>
<td>1.38%</td>
<td>1.71%</td>
</tr>
<tr>
<td>3.56%</td>
<td>3.59%</td>
<td>2.22%</td>
</tr>
<tr>
<td>2.36%</td>
<td>6.25%</td>
<td>2.64%</td>
</tr>
<tr>
<td>5.36%</td>
<td>2.02%</td>
<td>2.06%</td>
</tr>
<tr>
<td>6.12%</td>
<td>2.98%</td>
<td>2.15%</td>
</tr>
<tr>
<td>5.65%</td>
<td>0.80%</td>
<td>1.70%</td>
</tr>
<tr>
<td>6.40%</td>
<td>5.26%</td>
<td>1.30%</td>
</tr>
<tr>
<td>3.80%</td>
<td>1.87%</td>
<td>1.27%</td>
</tr>
<tr>
<td>5.62%</td>
<td>4.04%</td>
<td>1.81%</td>
</tr>
<tr>
<td>5.65%</td>
<td>4.96%</td>
<td>2.53%</td>
</tr>
<tr>
<td>3.02%</td>
<td>3.11%</td>
<td>2.63%</td>
</tr>
<tr>
<td>3.93%</td>
<td>1.87%</td>
<td>2.11%</td>
</tr>
<tr>
<td>3.11%</td>
<td>0.40%</td>
<td>1.69%</td>
</tr>
<tr>
<td>4.45%</td>
<td>4.86%</td>
<td>1.26%</td>
</tr>
<tr>
<td>7.37%</td>
<td>6.82%</td>
<td>3.70%</td>
</tr>
<tr>
<td>5.26%</td>
<td>2.83%</td>
<td>2.04%</td>
</tr>
<tr>
<td>4.49%</td>
<td>2.06%</td>
<td>2.02%</td>
</tr>
<tr>
<td>4.96%</td>
<td>4.86%</td>
<td>1.69%</td>
</tr>
<tr>
<td>4.35%</td>
<td>1.82%</td>
<td>2.11%</td>
</tr>
<tr>
<td>6.33%</td>
<td>3.08%</td>
<td>2.52%</td>
</tr>
<tr>
<td>4.35%</td>
<td>3.13%</td>
<td>1.79%</td>
</tr>
<tr>
<td>3.49%</td>
<td>1.80%</td>
<td>1.27%</td>
</tr>
</tbody>
</table>
A estos datos se les ha realizado un estudio de varianza de un factor con algunas muestras por grupo. Las conclusiones se muestran a continuación.

Tabla 11. Análisis de varianza en el secado de ladrillo bajo distintos tipos de sombra. (fuente. Elaboración propia)

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Cuenta</th>
<th>Suma</th>
<th>Promedio</th>
<th>Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol</td>
<td>30</td>
<td>1.46072</td>
<td>0.04869</td>
<td>0.00017</td>
</tr>
<tr>
<td>Malla</td>
<td>30</td>
<td>0.99099</td>
<td>0.03303</td>
<td>0.00035</td>
</tr>
<tr>
<td>Galpones</td>
<td>30</td>
<td>0.60068</td>
<td>0.02002</td>
<td>0.00003</td>
</tr>
</tbody>
</table>

RESUMEN

<table>
<thead>
<tr>
<th>Grupos</th>
<th>Cuenta</th>
<th>Suma</th>
<th>Promedio</th>
<th>Varianza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol</td>
<td>30</td>
<td>1.46072</td>
<td>0.04869</td>
<td>0.00017</td>
</tr>
<tr>
<td>Malla</td>
<td>30</td>
<td>0.99099</td>
<td>0.03303</td>
<td>0.00035</td>
</tr>
<tr>
<td>Galpones</td>
<td>30</td>
<td>0.60068</td>
<td>0.02002</td>
<td>0.00003</td>
</tr>
</tbody>
</table>

ANÁLISIS DE VARIANZA

<table>
<thead>
<tr>
<th>Origen de las variaciones</th>
<th>Suma de cuadrados</th>
<th>Grados de libertad</th>
<th>Promedio de los cuadrados</th>
<th>F</th>
<th>Probabilidad</th>
<th>Valor crítico para F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre grupos</td>
<td>0.012363</td>
<td>2</td>
<td>0.006181</td>
<td>33.965413</td>
<td>1.2534E-11</td>
<td>3.101296</td>
</tr>
<tr>
<td>Dentro de los grupos</td>
<td>0.015833</td>
<td>87</td>
<td>0.000182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.028196</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comentarios:

La probabilidad de ocurrencia S_i es menor a 0.05 por lo que es apreciable una diferencia en los promedios. Esto significa que en los galpones se produce una menor merma en la etapa del secado de ladrillo en pampa.
Temperatura y humedad bajo distintos tipos de sombra

Se muestran a continuación las gráficas de temperatura y humedad a distintos tipos de sombras que permitirán validar la información que permita lograr un proceso eficiente de secado de ladrillo.

Ensayo 4: Seguimiento de humedad (H1), proceso secado de ladrillo en pampa. Fuente: diseño propio.

Ensayo 5: Seguimiento de distribución de temperatura en secado de ladrillo. Fuente: diseño propio.

Ensayo 6: Comportamiento en reducción de humedad (H) en proceso de secado. (Fuente: Elaboración propia).

Ensayo 7: Gráfico distribución de Temperatura, proceso de secado. (Fuente: elaboración propia.)
La nomenclatura usada es la siguiente: H1 está conectado al sol directamente, H2 está conectado a los galpones y H3 a la sombra con malla.

Ensayo 8: H3 Gráfico distribución de humedad. Etapa de secado de ladrillo.

Ensayo 9: Gráfico distribución de temperatura en el proceso de secado.

Ensayo 10: Distribución de velocidad del viento en ensayos.
Ecuación 1: Programación de simulación en captura de datos. (Fuente. Elaboración propia.)

```matlab
clc
clear all
filename = 'datalogLimpio.csv';
delimiterIn = ',';
headerlinesIn = 1;
A = importdata(filename,delimiterIn,headerlinesIn);
FormatoFecha='dd/mmm/yyyy,HH:MM:SS';
[N,M]=size(A.textdata);
for I=2:N
    T=strcat(A.textdata(I,2),',',A.textdata(I,1));
    FeN=datenum(T,FormatoFecha);
    Fechas(I-1,:)=datestr(FeN);
end

%eliminar los NaN y copiar solo la info buena de la humedad y temperatura 1
J=1;
for I=1:N-1
    if(~isnan(A.data(I,1)) && A.data(I,1)>15)
        Fechas1(J,:)=Fechas(I,:);
        H1(J)=A.data(I,1);
        J=J+1;
    end
end
figure(1)
plot(datetime(Fechas1),H1)
grid
xlabel('Fecha')
ylabel('Porcentaje')

J=1;
for I=1:N-1
    if(~isnan(A.data(I,2)) && A.data(I,2)>15)
        Fechas2(J,:)=Fechas(I,:);
        T1(J)=A.data(I,2);
        J=J+1;
    end
end
figure(2)
plot(datetime(Fechas2),T1)
grid
xlabel('Fecha')
ylabel('°C')

%eliminar los NaN y copiar solo la info buena de la humedad y temperatura 2
J=1;
for I=1:N-1
    if(~isnan(A.data(I,3)) && A.data(I,3)>15)
        Fechas3(J,:)=Fechas(I,:);
        H2(J)=A.data(I,3);
        J=J+1;
    end
end
figure(3)
```

El presente cuadro muestra el detalle del código fuente creado para el análisis de la información obtenida en los ensayos. La ecuación 1 muestra el código en lenguaje Matlab que se encarga de leer los datos grabados que fueron tomados por el equipo de muestreo.

Código Matlab

```matlab
plot(datetime(Fechas3),H2)
grid
title('Humedad 2');
xlabel('Fecha')
ylabel('Porcentaje')

J=1;
for I=1:N-1
    if(~isnan(A.data(I,4)) && A.data(I,4)>15)
        Fechas4(J,:)=Fechas(I,:);
        T2(J)=A.data(I,4);
        J=J+1;
    end
end
figure(4)
plot(datetime(Fechas4),T2)
grid
title('Temperatura 2');
xlabel('Fecha')
ylabel('°C')
% eliminar los NaN y copiar solo la info buena de la humedad y temperatura 3
J=1;
for I=1:N-1
    if(~isnan(A.data(I,5)) && A.data(I,5)>15)
        Fechas5(J,:)=Fechas(I,:);
        H3(J)=A.data(I,5);
        J=J+1;
    end
end
figure(5)
plot(datetime(Fechas5),H3)
grid
title('Humedad 3');
xlabel('Fecha')
ylabel('Porcentaje')

J=1;
for I=1:N-1
    if(~isnan(A.data(I,6)) && A.data(I,6)>15)
        Fechas6(J,:)=Fechas(I,:);
        T3(J)=A.data(I,6);
        J=J+1;
    end
end
figure(6)
plot(datetime(Fechas6),T3)
grid
title('Temperatura 3');
xlabel('Fecha')
ylabel('°C')
% velocidad del aire
% figura(7)
% plot(datetime(Fechas),A.data(:,8))
% title('Velocidad viento');

J=1;
for I=1:N-1
    if(~isnan(A.data(I,8)))
        Fechas7(J,:)=Fechas(I,:);
        Viento(J)=A.data(I,8);
        J=J+1;
    end
end
figure(7)
plot(datetime(Fechas7),Viento)
grid
title('Velocidad viento');
xlabel('Fecha')
ylabel('m/s')
```
Esto debido a que algunos datos no se escriben correctamente y deben ser eliminados digitalmente, para obtener una información acorde a nuestro objetivo de estudio.
CAPITULO V: DISCUSION, CONCLUSIONES Y RECOMENDACIONES

5.1 Discusión

De acuerdo con la información obtenida en lo investigado, se identificaron 7 variables asociadas al proceso de secado de ladrillo tipo KingKong, estas son:

- Porcentaje de ladrillos rajados.
- Tipo de arcilla.
- Tipo de sombreado.
- Tipo de apilamiento.
- Temperatura.
- Humedad relativa.
- Velocidad del viento.

Las cuales cumplen un rol importante y significativo, no solo para el proceso de secado del producto sino por la influencia que ellas tienen en el resultado del producto final, en su etapa de quemado en horno y el uso que se da en el proceso constructivo, siendo la base para obtener un producto acorde a las normas técnicas y necesidades del mercado.

El presente estudio, identificó algunos factores que deben ser considerados como parte de los protocolos de trabajo en el proceso de secado de ladrillo y cuya aplicación permitirá obtener un adecuado uso del producto en el proceso constructivo que permita asegurar la calidad de la obra.

5.2 Conclusiones

Luego de realizar los ensayos respectivos y las simulaciones del proceso de secado de ladrillo maquinado KingKong tipo IV, en ambiente natural y bajo distintas formas de apilamiento y exposición al sol, sombra y viento se han obtenido las siguientes conclusiones:
• Se ha identificado a través del estudio realizado en el proceso de secado natural de ladrillo maquinado KingKong tipo IV, en su etapa de crudo, que las mermas por resquebrajamiento del producto se reducen bajo el método de secado natural en galpones, siendo el más eficiente, dado que brinda un mejor aprovechamiento de energía solar y de la circulación de aire alrededor del secadero, logrando una eficiencia energética adecuada.

• El estudio del sistema de trazabilidad eficiente de materia prima utilizada en el proceso de crudo, para la producción de ladrillo KingKong tipo IV, identificando su procedencia, componentes que la conforman y el monitoreo del proceso de secado considerando los indicadores de temperatura, exposición al viento y humedad relativa, permitirá un manejo uniforme en el interior del producto, reduciendo la posibilidad de resquebrajaduras.

• El análisis del proceso de secado de ladrillo en los galpones, a través del diseño a escala virtual analizando las variables críticas de producción, identificó que se detiene con mayor facilidad la humedad relativa logrando una menor tasa de evaporación lo que evita las rajaduras en los ladrillos. Asimismo, la forma de apilamiento no afecta la calidad del ladrillo en el proceso de secado. Lo que afecta la calidad del secado es la velocidad de perdida de humedad, la misma que debería ser pequeña al inicio y alta al final.

• Como parte de las tareas de trabajo en el secado natural de ladrillo, se recomienda realizar un seguimiento continuo del proceso de secado, el cual debería ser incorporado dentro de las labores cotidianas, dado que las pruebas realizadas en los galpones identificaron como punto crítico el contorno del área de secado, debido a que la velocidad del viento es mayor, motivo por el cual el seguimiento continuo del
proceso, según modelo virtual, debe ser incorporado en los protocolos de trabajo, esto permitirá una disminución de mermas en la producción de ladrillo.

5.3 Recomendaciones

- Se recomienda en el proceso de secado de ladrillo al aire libre, utilizar los galpones como medio de protección para que el ladrillo crudo no se resquebraje, protegiendo los extremos del producto que se encuentren cerca de corrientes de aire.

- En el proceso de secado de ladrillo, cuando la velocidad del viento es alta, el secado se realiza de forma violenta originando mermas por resquebrajamientos, motivo por el cual se deben implementar los protocolos adecuados para el cuidado del proceso.

- El tipo de apilamiento del producto no debe ser mayor a 2 filas, debido a que la mezcla se deteriora en ese nivel.

- Se sugiere implementar un sistema de monitoreo en campo que permita muestrear los niveles de temperatura, velocidad de viento y humedad en los ladrillos apilados, con ello se tendrá un mejor seguimiento del proceso de secado.

- Como parte del protocolo de trabajo en el secado de ladrillo maquinado KingKong Tipo IV, se sugiere, después que se obtiene el ladrillo maquinado de la extrusora, en el proceso de secado seguir los siguientes lineamientos:
 - Trasladar los ladrillos en una plataforma móvil que no supere la velocidad de 20 km/h, al área de secado natural. Esto con el fin de no deformar los ladrillos maquinados antes del secado.
 - Descargar los ladrillos en bloques de 4, manteniendo una separación entre pares de ladrillos de 5cm.
 - Realizar el apilamiento para el proceso de secado de 250 ladrillos en 2 filas según lo especificado en tipo de apilamiento 1 y tipo de apilamiento 2.
- Realizar la cobertura del ladrillo con la caja de madera asegurando que se encuentra libre el ingreso de aire en la parte inferior.

- Regular el ducto superior para la salida del aire, dependiendo de la hora del día.

- Supervisar el parejo uniforme de secado cada 2 días y según lo observado, regular algunas de las 4 entradas de aire.
Referencias bibliográficas

Bibliografía

Elena Sánchez Borea(1982). Estudio de la Variabilidad en la calidad de los ladrillos producidos en la ciudad de Lima. Tesis PUCP.

http://www.redladrilleras.net/assets/files/e59ea3dddfb7c5524ccc7ffe5eece618.pdf

http://www.redladrilleras.net/assets/files/ed7836d9f5339b2f35e3dae07ca17f92.pdf

Informe Fondo Mivivienda. Recuperado de:

“Diseño del proyecto para la implementación de una fábrica productora de ladrillo en la ciudad de Azogues”, Tesis desarrollada por Juan Fernando Sacoto Romo, página 170. Recuperado de:

“Diseño de un prototipo de quemador y horno de ladrillo, para combustible sólido multipropósito con controladores automáticos con reducción en la emisión de gases a través del reciclaje de los mismos”, del proyecto 021-FINCyT-FIDECOM-2012. Recuperado de:
https://drive.google.com/open?id=1uVhBWOTo1C9tGJ_Tzzw2SVCkgZwLCpST

“Corporación Universitaria Tecnológica de Bolívar Facultad de Ingeniería Mecánica Cartagena de Indias D.T. y C. la tesis denominada “Diseño de un Sistema de Secado Artificial para la producción de ladrillera la Victoria”. Recuperado de:
https://drive.google.com/file/d/1cDz848pdfTOJxf-gysctYDscYNfSm9RWx/view?usp=sharing

Anexos
Anexo 1: Matriz de consistencia

<table>
<thead>
<tr>
<th>Problema general</th>
<th>Objetivo general</th>
<th>Hipótesis general</th>
<th>METODOLOGÍA</th>
<th>POBLACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>El incremento de los rechazos por mermas de resquebrajamiento de ladrillo maquinado KingKong tipo IV en su etapa de crudo, durante el proceso de secado natural, contribuye al incumplimiento de las Normas Técnicas Peruanas 331.017 revisado el año 2015 (las cuales establecen las definiciones, clasificación, condiciones generales y requisitos que debe cumplir el ladrillo).</td>
<td>Estudiar durante el proceso de secado natural de ladrillo maquinado KingKong tipo IV las mermas originadas por resquebrajamiento.</td>
<td>¿En el proceso de secado natural del ladrillo maquinado KingKong tipo IV, en su etapa de crudo, se incrementan las mermas de producción por resquebrajamiento, debido a la ausencia de un proceso eficiente de monitoreo del producto controlando los indicadores de calidad, con aprovechamiento energético?</td>
<td>El tipo de investigación utilizada en nuestro estudio es experimental. Se implementará un sistema de monitoreo para identificar las variables que afectan a la calidad de secado del ladrillo. Se realizará en un ambiente que permitirá el monitoreo de las variables, aplicando un método descriptivo.</td>
<td>La población está constituida por la producción de ladrillo en la empresa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problema Específico</th>
<th>Objetivo Específico</th>
<th>Hipótesis Específicos</th>
<th>Muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ¿Contribuye al incremento de los rechazos por mermas de resquebrajamiento de ladrillo maquinado KingKong tipo IV, la ausencia de un sistema de trazabilidad de los componentes que conforman la masa (crudo o materia prima) utilizada en la producción de ladrillos de arcilla cocida?</td>
<td>Definir un sistema de trazabilidad de los componentes que conforman la masa (crudo o materia prima) utilizada en la producción de ladrillo KingKong Tipo IV.</td>
<td>¿La definición de un sistema de trazabilidad eficiente, permitirá definir los mejores sitios de procedencia de materia prima acordes a los requerimientos de producción que permitan reducir las mermas por resquebrajamiento del ladrillo KingKong Tipo IV?</td>
<td>Se definirá un sistema de trazabilidad en la empresa para conocer la procedencia exacta de la materia prima. Los tipos I, II y III.</td>
</tr>
<tr>
<td>b. ¿Origen problemas en la etapa de secado, la ausencia de un proceso eficiente de monitoreo de variables críticas (temperatura, humedad, viento y exposición al sol), en el secado natural de la masa de ladrillo?</td>
<td>Obtener un diseño eficiente a escala virtual, del proceso de monitoreo de variables críticas (temperatura, humedad, viento y exposición al sol) en el secado natural de ladrillo KingKong Tipo IV.</td>
<td>¿La definición del diseño a escala virtual del proceso de secado se ajusta a las variables críticas de producción definidas en el modelo (temperatura, humedad, viento y exposición al sol)?</td>
<td>Se definen las variables: Variable Independiente: Definida como la causa de las variaciones en el proceso de secado de ladrillo en pampa y se encuentra conformada por el tipo de mezcla utilizada para la producción de ladrillo. Variable Dependiente: La variable que se va a medir, en este caso el número de ladrillos resquebrajados, para lo cual se han determinado dos factores, apilamiento y tipo de arcilla.</td>
</tr>
<tr>
<td>c. ¿Establecer protocolos de trabajo en el secado de ladrillo maquinado KingKong tipo IV, permiten una disminución de la merma y mejoras en el impacto ambiental?</td>
<td>Implementar protocolos de trabajo en el proceso de secado de ladrillo maquinado KingKong Tipo IV, que permitan una disminución de la merma por resquebrajamiento y reducción del impacto ambiental por manipuleo del producto.</td>
<td>¿La definición de los protocolos de trabajo en el secado de ladrillo contribuyen a la disminución de mermas en la producción de ladrillo maquinado, minimizando un impacto ambiental negativo?</td>
<td></td>
</tr>
</tbody>
</table>
Anexo 2: Matriz de operacionalización

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>DEFINICION</th>
<th>DIMENSION</th>
<th>INDICADOR</th>
<th>ITEM-INSTRUMENTO</th>
<th>ESCALA</th>
</tr>
</thead>
</table>
| Variable Dependiente | La variable dependiente, se ha definido como la calidad y eficiencia de ladrillo KingKong Tipo IV, obtenido luego del proceso de secado. | **Dimensión 1:** Calidad del ladrillo en el proceso de secado por distinto Tipo de apilamiento. | Porcentaje de descarte en el proceso de apilamiento Tipo I. | - Dispositivo Celular, para captura de datos.
- Sensor de temperatura.
- Sensor de velocidad viento.
- Sistema embebido Arduino con un reloj en tiempo real y una memoria de 32GB para almacenamiento de datos. | Valores entre 0 y 100% |
| | | **Dimensión 2:** Eficiencia en las distintas formas de secado de ladrillo KingKong Tipo IV. | Porcentaje de descarte en el proceso de apilamiento Tipo II. | | |
| Variable Independiente | La variable independiente, estará dada, por la calidad de la materia prima que conforma el ladrillo KingKong tipo IV, antes del proceso de secado. | **Dimensión 1:** Calidad de la materia prima utilizada. | Eficiencia en el secado de ladrillo bajo Sol.
Eficiencia en el secado de ladrillo bajo Malla.
Eficiencia en el secado de ladrillo bajo Galpón. | - Malla de cobertura para sombra.
- Esteras para cobertura.
- Carretas para transporte del producto. | Valores entre 0 y 100% |
| | | **Dimensión 2:** Calidad de ladrillo crudo en el proceso de secado. | Pruebas de laboratorio de las arcillas utilizadas. | Laboratorio autorizado. | |
| | | | Cantidad de ladrillo crudo producido en el proceso de secado. | Línea de producción de crudo. | |
Anexo 3: Equipo Datalogger

Para el desarrollo de la investigación se realizó la construcción de un equipo denominado datalogger, cuya funcionalidad fue la de almacenar valores de la temperatura y la humedad relativa en tres puntos distintos, del área de ubicación del ladrillo crudo. Asimismo, parte de su función fue la de medir la velocidad del viento, para lo cual se construyó una veleta que permita registrar el giro de esta y lograr relacionarla con la velocidad del viento.

El equipo cuenta internamente con un Arduino que se encarga de la lectura de los sensores. Contiene una memoria de 16GB para el almacenamiento de los datos, y se le ha implementado un sistema Bluetooth para recibir la data en el teléfono celular y verificar el correcto funcionamiento del equipo mientras trabaja, el cual tendrá que administrar la información por más de 10 días y de esta manera se pueda contar con un registro de pruebas.

Ilustración 23: Simulación de data proceso de monitoreo de secado en PC.

Ilustración 24: Monitoreo de datos en dispositivo.
Anexo 4: Tablas resumen de análisis de resultados

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>232</td>
<td>3</td>
<td>235</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.3%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>232</td>
<td>8</td>
<td>240</td>
<td>Sin techo fuera de galpón</td>
<td>3.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>231</td>
<td>4</td>
<td>235</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>153</td>
<td>13</td>
<td>166</td>
<td>Bajo sombra fuera de galpón</td>
<td>7.8%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>201</td>
<td>15</td>
<td>216</td>
<td>Sin techo fuera de galpón</td>
<td>6.9%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>316</td>
<td>8</td>
<td>324</td>
<td>Dentro de galpón bajo techo</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>235</td>
<td>8</td>
<td>243</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.3%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>235</td>
<td>14</td>
<td>249</td>
<td>Sin techo fuera de galpón</td>
<td>5.6%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>236</td>
<td>4</td>
<td>240</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>241</td>
<td>6</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>2.4%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>234</td>
<td>13</td>
<td>247</td>
<td>Sin techo fuera de galpón</td>
<td>5.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>243</td>
<td>6</td>
<td>249</td>
<td>Dentro de galpón bajo techo</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>234</td>
<td>15</td>
<td>249</td>
<td>Bajo sombra fuera de galpón</td>
<td>6.0%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>234</td>
<td>13</td>
<td>247</td>
<td>Sin techo fuera de galpón</td>
<td>5.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>235</td>
<td>4</td>
<td>239</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>214</td>
<td>3</td>
<td>217</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>222</td>
<td>10</td>
<td>232</td>
<td>Sin techo fuera de galpón</td>
<td>4.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>232</td>
<td>4</td>
<td>236</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>239</td>
<td>11</td>
<td>250</td>
<td>Bajo sombra fuera de galpón</td>
<td>4.4%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>238</td>
<td>13</td>
<td>251</td>
<td>Sin techo fuera de galpón</td>
<td>5.2%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>228</td>
<td>5</td>
<td>233</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>218</td>
<td>6</td>
<td>224</td>
<td>Bajo sombra fuera de galpón</td>
<td>2.7%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>222</td>
<td>17</td>
<td>239</td>
<td>Sin techo fuera de galpón</td>
<td>7.1%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>234</td>
<td>5</td>
<td>239</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>214</td>
<td>3</td>
<td>217</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>226</td>
<td>8</td>
<td>234</td>
<td>Sin techo fuera de galpón</td>
<td>3.4%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>230</td>
<td>4</td>
<td>234</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>215</td>
<td>8</td>
<td>223</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.6%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>217</td>
<td>8</td>
<td>225</td>
<td>Sin techo fuera de galpón</td>
<td>3.6%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>220</td>
<td>5</td>
<td>225</td>
<td>Dentro de galpón bajo techo</td>
<td>2.2%</td>
</tr>
<tr>
<td>Proyecto UDEP</td>
<td>BUENOS</td>
<td>DEFECTUOSOS</td>
<td>TOTAL</td>
<td>UBICACIÓN</td>
<td>% Defectuosos</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Plia 1</td>
<td>210</td>
<td>14</td>
<td>224</td>
<td>Bajo sombra fuera de galpón</td>
<td>6.3%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>212</td>
<td>12</td>
<td>224</td>
<td>Sin techo fuera de galpón</td>
<td>5.4%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>221</td>
<td>6</td>
<td>227</td>
<td>Dentro de galpón bajo techo</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>243</td>
<td>5</td>
<td>248</td>
<td>Bajo sombra fuera de galpón</td>
<td>2.0%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>234</td>
<td>14</td>
<td>248</td>
<td>Sin techo fuera de galpón</td>
<td>5.6%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>238</td>
<td>5</td>
<td>243</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>228</td>
<td>7</td>
<td>235</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.0%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>230</td>
<td>15</td>
<td>245</td>
<td>Sin techo fuera de galpón</td>
<td>6.1%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>228</td>
<td>5</td>
<td>233</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>247</td>
<td>2</td>
<td>249</td>
<td>Bajo sombra fuera de galpón</td>
<td>0.8%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>248</td>
<td>6</td>
<td>254</td>
<td>Sin techo fuera de galpón</td>
<td>2.4%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>231</td>
<td>4</td>
<td>235</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>234</td>
<td>13</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>5.3%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>234</td>
<td>16</td>
<td>250</td>
<td>Sin techo fuera de galpón</td>
<td>6.4%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>228</td>
<td>3</td>
<td>231</td>
<td>Dentro de galpón bajo techo</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>210</td>
<td>4</td>
<td>214</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.9%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>228</td>
<td>9</td>
<td>237</td>
<td>Sin techo fuera de galpón</td>
<td>3.8%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>234</td>
<td>3</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>214</td>
<td>9</td>
<td>223</td>
<td>Bajo sombra fuera de galpón</td>
<td>4.0%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>220</td>
<td>9</td>
<td>229</td>
<td>Sin techo fuera de galpón</td>
<td>3.9%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>217</td>
<td>4</td>
<td>221</td>
<td>Dentro de galpón bajo techo</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>230</td>
<td>12</td>
<td>242</td>
<td>Bajo sombra fuera de galpón</td>
<td>5.0%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>235</td>
<td>14</td>
<td>249</td>
<td>Sin techo fuera de galpón</td>
<td>5.6%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>231</td>
<td>6</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>218</td>
<td>7</td>
<td>225</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.1%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>234</td>
<td>14</td>
<td>248</td>
<td>Sin techo fuera de galpón</td>
<td>5.6%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>222</td>
<td>6</td>
<td>228</td>
<td>Dentro de galpón bajo techo</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plia 1</td>
<td>210</td>
<td>4</td>
<td>214</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.9%</td>
</tr>
<tr>
<td>Plia 2</td>
<td>225</td>
<td>7</td>
<td>232</td>
<td>Sin techo fuera de galpón</td>
<td>3.0%</td>
</tr>
<tr>
<td>Plia 3</td>
<td>232</td>
<td>5</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
<tr>
<td>Proyecto UDEP</td>
<td>BUENOS</td>
<td>DEFECTUOSOS</td>
<td>TOTAL</td>
<td>UBICACIÓN</td>
<td>% Defectuosos</td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Pila 1</td>
<td>246</td>
<td>1</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>0.4%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>249</td>
<td>8</td>
<td>257</td>
<td>Sin techo fuera de galpón</td>
<td>3.1%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>233</td>
<td>4</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>235</td>
<td>12</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>4.9%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>236</td>
<td>11</td>
<td>247</td>
<td>Sin techo fuera de galpón</td>
<td>4.5%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>235</td>
<td>3</td>
<td>238</td>
<td>Dentro de galpón bajo techo</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>205</td>
<td>15</td>
<td>220</td>
<td>Bajo sombra fuera de galpón</td>
<td>6.8%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>201</td>
<td>16</td>
<td>217</td>
<td>Sin techo fuera de galpón</td>
<td>7.4%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>208</td>
<td>8</td>
<td>216</td>
<td>Dentro de galpón bajo techo</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>240</td>
<td>7</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>2.8%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>234</td>
<td>13</td>
<td>247</td>
<td>Sin techo fuera de galpón</td>
<td>5.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>240</td>
<td>5</td>
<td>245</td>
<td>Dentro de galpón bajo techo</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>238</td>
<td>5</td>
<td>243</td>
<td>Bajo sombra fuera de galpón</td>
<td>2.1%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>234</td>
<td>11</td>
<td>245</td>
<td>Sin techo fuera de galpón</td>
<td>4.5%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>243</td>
<td>5</td>
<td>248</td>
<td>Dentro de galpón bajo techo</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>235</td>
<td>12</td>
<td>247</td>
<td>Bajo sombra fuera de galpón</td>
<td>4.9%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>230</td>
<td>12</td>
<td>242</td>
<td>Sin techo fuera de galpón</td>
<td>5.0%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>232</td>
<td>4</td>
<td>236</td>
<td>Dentro de galpón bajo techo</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>216</td>
<td>4</td>
<td>220</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.8%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>220</td>
<td>10</td>
<td>230</td>
<td>Sin techo fuera de galpón</td>
<td>4.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>232</td>
<td>5</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>2.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>220</td>
<td>7</td>
<td>227</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.1%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>222</td>
<td>15</td>
<td>237</td>
<td>Sin techo fuera de galpón</td>
<td>6.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>232</td>
<td>6</td>
<td>238</td>
<td>Dentro de galpón bajo techo</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>217</td>
<td>7</td>
<td>224</td>
<td>Bajo sombra fuera de galpón</td>
<td>3.1%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>220</td>
<td>10</td>
<td>230</td>
<td>Sin techo fuera de galpón</td>
<td>4.3%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>220</td>
<td>4</td>
<td>224</td>
<td>Dentro de galpón bajo techo</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proyecto UDEP</th>
<th>BUENOS</th>
<th>DEFECTUOSOS</th>
<th>TOTAL</th>
<th>UBICACIÓN</th>
<th>% Defectuosos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pila 1</td>
<td>218</td>
<td>4</td>
<td>222</td>
<td>Bajo sombra fuera de galpón</td>
<td>1.8%</td>
</tr>
<tr>
<td>Pila 2</td>
<td>221</td>
<td>8</td>
<td>229</td>
<td>Sin techo fuera de galpón</td>
<td>3.5%</td>
</tr>
<tr>
<td>Pila 3</td>
<td>234</td>
<td>3</td>
<td>237</td>
<td>Dentro de galpón bajo techo</td>
<td>1.3%</td>
</tr>
</tbody>
</table>
Anexo 5: Muestreo de datos de Datalogger

<table>
<thead>
<tr>
<th>Hora</th>
<th>Fecha</th>
<th>H1</th>
<th>T1</th>
<th>H2</th>
<th>T2</th>
<th>H3</th>
<th>T3</th>
<th>frecuencia</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:15:00</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>25.6</td>
<td>99.9</td>
<td>23.9</td>
<td>99.9</td>
<td>22.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:16:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>25.6</td>
<td>99.9</td>
<td>24</td>
<td>99.9</td>
<td>22.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:20:03</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>25.3</td>
<td>99.9</td>
<td>24.1</td>
<td>99.9</td>
<td>21.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:28:00</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>25.3</td>
<td>99.9</td>
<td>23.9</td>
<td>99.9</td>
<td>21.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:29:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>25.1</td>
<td>99.9</td>
<td>23.9</td>
<td>99.9</td>
<td>21.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:40:02</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>24.9</td>
<td>99.9</td>
<td>23.5</td>
<td>99.9</td>
<td>20.7</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>13:55:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>22.6</td>
<td>97.9</td>
<td>21.6</td>
<td>99.9</td>
<td>21.2</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>13:56:02</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>22.5</td>
<td>98.4</td>
<td>21.6</td>
<td>99.9</td>
<td>21.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14:59:47</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>22.6</td>
<td>95</td>
<td>22</td>
<td>99.9</td>
<td>21.7</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>15:12:03</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>22.6</td>
<td>95</td>
<td>21.9</td>
<td>99.9</td>
<td>21.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15:56:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>95.7</td>
<td>21.3</td>
<td>99.9</td>
<td>21.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15:59:26</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>95.5</td>
<td>21.3</td>
<td>99.9</td>
<td>21.4</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>15:59:47</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>95.4</td>
<td>21.3</td>
<td>99.9</td>
<td>21.4</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>16:11:02</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.7</td>
<td>95.8</td>
<td>21.2</td>
<td>99.9</td>
<td>21.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16:24:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.5</td>
<td>94.7</td>
<td>21.2</td>
<td>99.9</td>
<td>21.2</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>16:32:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21.4</td>
<td>94.8</td>
<td>21</td>
<td>99.9</td>
<td>21.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16:57:03</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>96</td>
<td>20.4</td>
<td>99.9</td>
<td>21</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>16:58:01</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>96.3</td>
<td>20.3</td>
<td>99.9</td>
<td>20.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16:59:35</td>
<td>10/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>96.6</td>
<td>20.3</td>
<td>99.9</td>
<td>20.8</td>
<td>8</td>
<td>1.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hora</th>
<th>Fecha</th>
<th>H1</th>
<th>T1</th>
<th>H2</th>
<th>T2</th>
<th>H3</th>
<th>T3</th>
<th>frecuencia</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>03:54:01</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16.3</td>
<td>99.9</td>
<td>16</td>
<td>87.1</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:38:03</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16.1</td>
<td>99.9</td>
<td>15.9</td>
<td>99.9</td>
<td>16.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>05:59:52</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>15.9</td>
<td>99.9</td>
<td>16.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:09:00</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>15.9</td>
<td>99.9</td>
<td>16.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:48:04</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16.5</td>
<td>99.9</td>
<td>16.1</td>
<td>99.9</td>
<td>15.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>06:59:48</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>16</td>
<td>99.9</td>
<td>15.8</td>
<td>99.9</td>
<td>15.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:49:01</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>97.9</td>
<td>19.9</td>
<td>99.9</td>
<td>19.7</td>
<td>14</td>
<td>1.87</td>
</tr>
<tr>
<td>11:59:09</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>98</td>
<td>20</td>
<td>99.9</td>
<td>20.3</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>12:04:03</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.2</td>
<td>98.1</td>
<td>20.2</td>
<td>99.9</td>
<td>20.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13:28:00</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.8</td>
<td>94.9</td>
<td>21.7</td>
<td>99.9</td>
<td>21.3</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>15:07:02</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>94.6</td>
<td>21.9</td>
<td>99.9</td>
<td>21.6</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>15:46:01</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>94.4</td>
<td>21.6</td>
<td>99.9</td>
<td>21.5</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>15:55:01</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>95.2</td>
<td>21.6</td>
<td>99.9</td>
<td>21.3</td>
<td>14</td>
<td>1.87</td>
</tr>
<tr>
<td>15:59:53</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>22.1</td>
<td>95.6</td>
<td>21.4</td>
<td>99.9</td>
<td>21.3</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>16:18:02</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>95.3</td>
<td>21.3</td>
<td>99.9</td>
<td>21.2</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>16:29:01</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.7</td>
<td>95.3</td>
<td>21.3</td>
<td>99.9</td>
<td>21.1</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>16:31:00</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.6</td>
<td>95.6</td>
<td>21.2</td>
<td>99.9</td>
<td>21.1</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>16:51:03</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.3</td>
<td>95.4</td>
<td>21</td>
<td>99.9</td>
<td>20.8</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>16:54:03</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.3</td>
<td>95.6</td>
<td>20.8</td>
<td>99.9</td>
<td>20.7</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>16:59:02</td>
<td>11/09/2019</td>
<td>99.9</td>
<td>21.1</td>
<td>95.4</td>
<td>20.7</td>
<td>99.9</td>
<td>20.6</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>Hora</td>
<td>Fecha</td>
<td>H1</td>
<td>T1</td>
<td>H2</td>
<td>T2</td>
<td>H3</td>
<td>T3</td>
<td>frecuencia</td>
<td>m/s</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>05:06:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>16.2</td>
<td>99.9</td>
<td>16.6</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>06:41:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>16.3</td>
<td>99.9</td>
<td>16.1</td>
<td>99.9</td>
<td>16.7</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>06:59:08</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>16.1</td>
<td>99.9</td>
<td>16.7</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>06:59:12</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>16.2</td>
<td>99.9</td>
<td>16.7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>07:09:01</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>16.4</td>
<td>99.9</td>
<td>16.2</td>
<td>99.9</td>
<td>16.8</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>11:56:02</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.6</td>
<td>99.9</td>
<td>19.6</td>
<td>99.9</td>
<td>20.3</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>11:59:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>99.9</td>
<td>19.6</td>
<td>99.9</td>
<td>20.4</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>11:59:07</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>99.9</td>
<td>19.7</td>
<td>99.9</td>
<td>20.4</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>12:01:02</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>99.9</td>
<td>19.7</td>
<td>99.9</td>
<td>20.4</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>12:03:01</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>99.9</td>
<td>19.6</td>
<td>99.9</td>
<td>20.3</td>
<td>5</td>
<td>0.67</td>
</tr>
<tr>
<td>12:05:00</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22.1</td>
<td>99.9</td>
<td>19.8</td>
<td>99.9</td>
<td>20.3</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>12:43:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22.7</td>
<td>99.8</td>
<td>20.5</td>
<td>99.9</td>
<td>20.9</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>16:20:01</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22.1</td>
<td>97.6</td>
<td>20.8</td>
<td>99.9</td>
<td>21.2</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>16:22:00</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22.1</td>
<td>97.7</td>
<td>20.7</td>
<td>99.9</td>
<td>21.2</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>16:32:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>97.8</td>
<td>20.5</td>
<td>99.9</td>
<td>21.2</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>16:55:03</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.4</td>
<td>98.1</td>
<td>20.3</td>
<td>99.9</td>
<td>20.8</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>16:58:00</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.4</td>
<td>97.9</td>
<td>20.3</td>
<td>99.9</td>
<td>20.8</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>16:59:47</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21.3</td>
<td>98</td>
<td>20.3</td>
<td>99.9</td>
<td>20.8</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>17:18:00</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>97.9</td>
<td>20.1</td>
<td>99.9</td>
<td>20.5</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>17:31:01</td>
<td>12/09/2019</td>
<td>99.9</td>
<td>20.7</td>
<td>97.4</td>
<td>20</td>
<td>99.9</td>
<td>20.2</td>
<td>8</td>
<td>1.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hora</th>
<th>Fecha</th>
<th>H1</th>
<th>T1</th>
<th>H2</th>
<th>T2</th>
<th>H3</th>
<th>T3</th>
<th>frecuencia</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>06:04:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>16.7</td>
<td>99.9</td>
<td>16.5</td>
<td>99.9</td>
<td>16.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:36:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.5</td>
<td>99.8</td>
<td>19.4</td>
<td>99.9</td>
<td>20</td>
<td>4</td>
<td>0.53</td>
</tr>
<tr>
<td>11:38:04</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.6</td>
<td>99.9</td>
<td>19.6</td>
<td>99.9</td>
<td>19.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11:44:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.7</td>
<td>99.8</td>
<td>19.6</td>
<td>99.9</td>
<td>20.1</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>12:28:01</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.4</td>
<td>99.5</td>
<td>19.8</td>
<td>99.9</td>
<td>20.9</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>12:46:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.7</td>
<td>98.8</td>
<td>20.6</td>
<td>99.9</td>
<td>21.3</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>16:23:01</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>23.3</td>
<td>96.6</td>
<td>21.6</td>
<td>99.9</td>
<td>22.5</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>16:38:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.9</td>
<td>97.1</td>
<td>21.4</td>
<td>99.9</td>
<td>22.5</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>16:42:01</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.9</td>
<td>97.1</td>
<td>21.4</td>
<td>99.9</td>
<td>22.3</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>17:02:03</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.6</td>
<td>95.6</td>
<td>21.2</td>
<td>99.9</td>
<td>22.1</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>17:11:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.3</td>
<td>96.9</td>
<td>21</td>
<td>99.9</td>
<td>21.8</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>17:16:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22.2</td>
<td>96.6</td>
<td>20.8</td>
<td>99.9</td>
<td>21.8</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>17:24:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>22</td>
<td>97.3</td>
<td>20.8</td>
<td>99.9</td>
<td>21.6</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>17:29:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.9</td>
<td>96.5</td>
<td>20.7</td>
<td>99.9</td>
<td>21.5</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>17:35:02</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.7</td>
<td>96.7</td>
<td>20.6</td>
<td>99.9</td>
<td>21.3</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>17:36:03</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.6</td>
<td>96.5</td>
<td>20.6</td>
<td>99.9</td>
<td>21.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17:44:03</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>21.5</td>
<td>96.7</td>
<td>20.4</td>
<td>99.9</td>
<td>21</td>
<td>10</td>
<td>1.33</td>
</tr>
<tr>
<td>18:08:01</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>96.7</td>
<td>20</td>
<td>99.9</td>
<td>20.3</td>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>18:09:03</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>96.6</td>
<td>20</td>
<td>99.9</td>
<td>20.3</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>18:10:00</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>96.6</td>
<td>20</td>
<td>99.9</td>
<td>20.3</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>18:11:02</td>
<td>13/09/2019</td>
<td>99.9</td>
<td>20.7</td>
<td></td>
<td></td>
<td>99.9</td>
<td>20.3</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>Hora</td>
<td>Fecha</td>
<td>H1</td>
<td>T1</td>
<td>H2</td>
<td>T2</td>
<td>H3</td>
<td>T3</td>
<td>frecuencia</td>
<td>m/s</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>17:25:01</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.3</td>
<td>92.5</td>
<td>19.5</td>
<td>99.9</td>
<td>21.3</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>17:26:03</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.2</td>
<td>92.5</td>
<td>19.5</td>
<td>99.9</td>
<td>21.3</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>17:27:01</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.2</td>
<td>92.6</td>
<td>19.4</td>
<td></td>
<td>9</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>17:28:02</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.1</td>
<td>92.6</td>
<td>19.4</td>
<td>99.9</td>
<td>21.2</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>17:29:00</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.2</td>
<td>92.6</td>
<td>19.4</td>
<td>99.9</td>
<td>21.2</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>17:30:02</td>
<td>14/09/2019</td>
<td>92.7</td>
<td>19.4</td>
<td>99.9</td>
<td>21.2</td>
<td>11</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:31:03</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.1</td>
<td>92.7</td>
<td>19.4</td>
<td>99.9</td>
<td>21.2</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>17:32:01</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21.1</td>
<td>92.7</td>
<td>19.3</td>
<td>99.9</td>
<td>21.2</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>17:33:03</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>92.8</td>
<td>19.4</td>
<td>99.9</td>
<td>21.2</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>17:36:00</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>20.9</td>
<td>92.8</td>
<td>19.3</td>
<td>99.9</td>
<td>21.1</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>17:37:02</td>
<td>14/09/2019</td>
<td>92.8</td>
<td>19.2</td>
<td>87.1</td>
<td>8.3</td>
<td>12</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:38:00</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>92.8</td>
<td>19.2</td>
<td>99.9</td>
<td>21</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>17:39:00</td>
<td>14/09/2019</td>
<td>99.9</td>
<td>21</td>
<td>92.2</td>
<td>19.2</td>
<td></td>
<td>8</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>17:39:56</td>
<td>14/09/2019</td>
<td>80</td>
<td>6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>1.87</td>
</tr>
<tr>
<td>17:41:00</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.2</td>
<td>80.1</td>
<td>6.4</td>
<td>87.1</td>
<td>8.1</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>17:41:56</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.1</td>
<td>80.1</td>
<td>6.4</td>
<td>87.1</td>
<td>8.1</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>17:42:00</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.1</td>
<td>80.1</td>
<td>6.4</td>
<td>87.1</td>
<td>8.1</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>17:42:28</td>
<td>14/09/2019</td>
<td>80.1</td>
<td>6.3</td>
<td>87.1</td>
<td>8.1</td>
<td></td>
<td>10</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>17:43:01</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.1</td>
<td>80.1</td>
<td>6.3</td>
<td></td>
<td>8</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>17:44:02</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.1</td>
<td>80</td>
<td>6.4</td>
<td>87.1</td>
<td>8.1</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>17:45:04</td>
<td>14/09/2019</td>
<td>87.1</td>
<td>8.1</td>
<td>80</td>
<td>6.3</td>
<td>87.1</td>
<td>8.1</td>
<td>13</td>
<td>1.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hora</th>
<th>Fecha</th>
<th>H1</th>
<th>T1</th>
<th>H2</th>
<th>T2</th>
<th>H3</th>
<th>T3</th>
<th>frecuencia</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:45:03</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.6</td>
<td>83.9</td>
<td>19.2</td>
<td>99.9</td>
<td>20.6</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>18:46:00</td>
<td>15/09/2019</td>
<td>83.8</td>
<td>19.2</td>
<td>99.9</td>
<td>20.6</td>
<td></td>
<td>4</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>18:47:02</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.5</td>
<td>83.7</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td>10</td>
<td>1.33</td>
</tr>
<tr>
<td>18:48:00</td>
<td>15/09/2019</td>
<td>82.8</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td></td>
<td>5</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>18:49:01</td>
<td>15/09/2019</td>
<td>83.4</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td></td>
<td>7</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>18:50:03</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.5</td>
<td>82</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>18:51:01</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.5</td>
<td>81.6</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>18:52:02</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.5</td>
<td>81.6</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td>8</td>
<td>1.07</td>
</tr>
<tr>
<td>18:53:05</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>82.5</td>
<td>19.1</td>
<td></td>
<td>8</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>18:56:01</td>
<td>15/09/2019</td>
<td>83.8</td>
<td>19.1</td>
<td>99.9</td>
<td>20.6</td>
<td></td>
<td>7</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>18:57:02</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>83.7</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>18:58:00</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>83.7</td>
<td>19.1</td>
<td></td>
<td>5</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>18:59:02</td>
<td>15/09/2019</td>
<td>83</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td></td>
<td>6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>18:59:06</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>83.3</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>18:59:10</td>
<td>15/09/2019</td>
<td>83.4</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td></td>
<td>6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>18:59:14</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>83.7</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>18:59:18</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>83.7</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>18:59:22</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>83.7</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td>12</td>
<td>1.6</td>
</tr>
<tr>
<td>18:59:27</td>
<td>15/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>99.9</td>
<td>20.5</td>
<td></td>
<td>10</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>18:59:31</td>
<td>15/09/2019</td>
<td>84.1</td>
<td>19.1</td>
<td>99.9</td>
<td>20.5</td>
<td></td>
<td>9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Hora</td>
<td>Fecha</td>
<td>H1</td>
<td>T1</td>
<td>H2</td>
<td>T2</td>
<td>H3</td>
<td>T3</td>
<td>frecuencia</td>
<td>m/s</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>09:10:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.2</td>
<td></td>
<td>99.9</td>
<td>18.6</td>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>09:11:03</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.2</td>
<td></td>
<td>99.9</td>
<td>18.6</td>
<td>4</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>09:12:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.9</td>
<td>17.4</td>
<td></td>
<td>7</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>09:13:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.8</td>
<td>17.5</td>
<td></td>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>09:14:03</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>09:15:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.9</td>
<td>17.5</td>
<td></td>
<td>6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>09:16:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.2</td>
<td>88.8</td>
<td>17.5</td>
<td></td>
<td>6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>09:17:03</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.9</td>
<td>17.5</td>
<td></td>
<td>2</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>09:18:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.8</td>
<td>17.5</td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:19:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.3</td>
<td>88.8</td>
<td>17.4</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>09:20:00</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.4</td>
<td>88.8</td>
<td>17.5</td>
<td>99.9</td>
<td>18.8</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>09:21:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>09:22:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td>88.9</td>
<td>17.6</td>
<td></td>
<td>5</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>09:23:00</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:24:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td>89.4</td>
<td>17.7</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>09:27:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td>89</td>
<td>17.6</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>09:28:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td>88.9</td>
<td>17.5</td>
<td></td>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>09:29:04</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.5</td>
<td>89.1</td>
<td>17.6</td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:30:01</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.6</td>
<td>89.2</td>
<td>17.6</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>09:34:02</td>
<td>16/09/2019</td>
<td>99.9</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hora</th>
<th>Fecha</th>
<th>H1</th>
<th>T1</th>
<th>H2</th>
<th>T2</th>
<th>H3</th>
<th>T3</th>
<th>frecuencia</th>
<th>m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:33:01</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.3</td>
<td>63.4</td>
<td>5.2</td>
<td>99.9</td>
<td>20</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>09:34:03</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>76.2</td>
<td>18</td>
<td>99.9</td>
<td>20.1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:35:01</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>76.3</td>
<td>18</td>
<td>99.9</td>
<td>20</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:36:02</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>76.4</td>
<td>18</td>
<td>99.9</td>
<td>20.1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:37:03</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.4</td>
<td>76.4</td>
<td>18</td>
<td>99.9</td>
<td>20.1</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>09:40:00</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>75.7</td>
<td>18.4</td>
<td>99.9</td>
<td>20.2</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>09:41:01</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>75.7</td>
<td>18.4</td>
<td>99.9</td>
<td>20.3</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>09:42:02</td>
<td>17/09/2019</td>
<td>98.7</td>
<td>20.9</td>
<td>75.2</td>
<td>18.5</td>
<td>62.9</td>
<td>5.7</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:43:00</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.7</td>
<td>75</td>
<td>18.4</td>
<td>99.9</td>
<td>20.3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>09:44:01</td>
<td>17/09/2019</td>
<td>99.4</td>
<td>20.8</td>
<td>74.9</td>
<td>18.4</td>
<td>99.9</td>
<td>20.3</td>
<td></td>
<td>4.53</td>
</tr>
<tr>
<td>09:45:02</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>74.9</td>
<td>18.4</td>
<td>99.9</td>
<td>20.4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:46:00</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>74.9</td>
<td>18.4</td>
<td>99.9</td>
<td>20.2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:49:00</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>74.9</td>
<td>18.4</td>
<td>99.9</td>
<td>20.2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:51:03</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.8</td>
<td>74.9</td>
<td>18.4</td>
<td>99.9</td>
<td>20.2</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>09:52:00</td>
<td>17/09/2019</td>
<td>75.2</td>
<td>18.6</td>
<td>99.9</td>
<td>20.2</td>
<td></td>
<td>6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>09:53:01</td>
<td>17/09/2019</td>
<td>62.2</td>
<td>5.7</td>
<td>99.9</td>
<td>20.3</td>
<td></td>
<td>5</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>09:56:01</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:57:03</td>
<td>17/09/2019</td>
<td>99.9</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:58:00</td>
<td>17/09/2019</td>
<td>98.1</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>09:59:01</td>
<td>17/09/2019</td>
<td>62</td>
<td>5.8</td>
<td>99.9</td>
<td>20.7</td>
<td></td>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>
Ilustración 25: Ladrillo crudo en producción.

Ilustración 26: Ladrillo crudo listo para traslado.

Ilustración 27: Galpones de secado de ladrillo.

Ilustración 28: Ladrillo crudo en Horno

Ilustración 29: Monitoreo de secado de ladrillo bajo Malla.

Ilustración 30: Secado de ladrillo Apilamiento Tipo I.

Ilustración 31: Sistema de monitoreo de data.

Ilustración 32: Cobertura para sombra en proceso de secado de ladrillo.
Ilustración 33: Secado Apilamiento II
Ilustración 34: Proceso cobertura de secado de ladrillo

Ilustración 35: Proceso retiro de protección.
Ilustración 36: Fase de retiro de ladrillo secado.

Ilustración 37: Ladrillo listo para ser retirado.
Ilustración 38: Sensor de monitoreo de indicadores.

Ilustración 39: Apilamiento de Ladrillo.
Ilustración 40: Determinación de muestra para secado.
Ilustración 41: Ensayo Número 3 bajo sombra

Ilustración 42: Ensayo de apilamiento bajo sombra

Ilustración 43: Traslado de ladrillo a pampa.

Ilustración 44: Galpones bajo sombra para monitoreo de pruebas.

Ilustración 45: Caja de toma de datos.

Ilustración 46: Zona de monitoreo de datos en habilitación.

Ilustración 47: Dispositivo de monitoreo de datos.

Ilustración 48: Aplicativo móvil de monitoreo de datos.
Ilustración 49: Caja protectora para evitar el secado brusco del ladrillo

Ilustración 50: Vista de los ladrillos sin la caja protectora

Ilustración 51: Modelo virtual de colocación de ladrillos para secado.

Ilustración 52: Modelo virtual de circulación de aire para secado de ladrillo.

Ilustración 53: Vectores velocidad del prototipo de secado controlado

Ilustración 54: Variación de la presión en el prototipo de secado controlado
Ilustración 55: Magnitud de la velocidad en el prototipo de secado controlado

Ilustración 56: Valores de la presión en el prototipo de secado controlado

Ilustración 57: Propiedades de la simulación del prototipo de secado controlado
Ilustración 58: Modelo virtual simulación de secado controlado

Ilustración 59: Vista superior de simulación velocidad de secado controlado

Ilustración 60: Vista isométrica de la simulación de velocidades del secado controlado

Ilustración 61: Vista ampliada de la simulación de velocidades del secado controlado

Ilustración 62: Vista ampliada de simulación de velocidad de secado natural.

Ilustración 63: Vista ampliada simulación circular proceso de secado.
Ilustración 64: Vista ampliada uniformes de velocidad de secado controlado.

Ilustración 65: Vista isométrica de la simulación secado controlado

Ilustración 66: Vista recortada de simulación del prototipo de secado controlado