

FACULTAD DE CIENCIAS AMBIENTALES CARRERA PROFESIONAL DE ARQUITECTURA Y URBANISMO AMBIENTAL

"CENTRO DE RECICLAJE SOSTENIBLE EN EL PARQUE INDUSTRIAL DE MUEBLES EN VILLA EL SALVADOR - LA ECOLOGÍA INDUSTRIAL COMO CONTRIBUCIÓN AL DESARROLLO SOSTENIBLE."

Tesis para optar el título profesional de:

ARQUITECTA

Presentado por:

Angie Lucero Pereyra Vela (0000-0001-9097-1326)

Asesor:

David Vladimir Pezo Covarrubias (0000-0002-2807-8825)

Lima - Perú

2021

ACTA DE SUSTENTACIÓN DE TESIS

Lima, 28 de setiembre de 2020.

Los integrantes del Jurado de tesis:

Presidente: Mg: Arq. Juan Manuel Del Castillo Cáceres	
Miembro: Mg. Arq. Rodrigo Daniel Jara Almonte Mantegazza	
Miembro: Mg. Arq. Wilfredo Guido Moscoso Espinoza	

Se reúnen para evaluar la tesis titulada:

"CENTRO DE RECICLAJE SOSTENIBLE EN EL PARQUE INDUSTRIAL DE MUEBLES EN VILLA EL SALVADOR - LA ECOLOGÍA INDUSTRIAL COMO CONTRIBUCIÓN AL DESARROLLO SOSTENIBLE."

Presentada por la bachiller:

Angie Lucero Pereyra Vela

Para optar el Título Profesional de Arquitecto.

Asesorada por: Arq. David Vladimir Pezo Covarrubias

Luego de haber evaluado el informe final de tesis y evaluado el desempeño de la bachiller de la carrera de **Arquitectura y Urbanismo Ambiental** en la sustentación, concluyen de manera unánime (X) por mayoría simple () calificar a:

Bachiller /	Angie Lucero Pereyra Vela	Nota (en l	Nota (en letras): TRECE		
Aprobado (X)	Aprobado - Muy buena ()	Aprobado - Sobresaliente ()	Desaprobado ()		

Los miembros del jurado firman en señal de conformidad.

A CONTRACTOR

Mg.Arq. Juan Manuel del Castillo Cáceres Presidente del Jurado

Arq. David Vladimir Pezo Covarrubias Asesor

Mg. Arq. Wilfredo Moscoso Espinoza Jurado

Mg. Arq. Rodrigo Jara Almonte Mantegazza
Jurado

T // (SII) 610 6738 informes@cientifica.edu.pe cientifica.edu.pe

En primer lugar, agradezco a Dios por bendecirme con personas increíbles que me brindan soporte en los momentos más difíciles y felices, a quienes dedico esta tesis, en especial a mi madre por brindarme todo el apoyo necesario sobre todo por enseñarme de esfuerzo, respeto y amor. No puedo dejar de mencionar a mi hijo quien me da las fuerzas y ganas de superarme cada día, también al padre de mi hijo por acompañarme y apoyarme en todos mis propósitos de vida y por último una mención especial a todos los que me apoyaron y ayudaron directa e indirectamente durante todo este periodo.

Quiero agradecer a la Universidad Científica del Sur por brindarme las herramientas para ser un profesional correcto, con valores ambientales y sociales; También quiero agradecer a la Doc. Shirley Chilet Cama por su orientación, motivación y exigencia en los inicios de esta tesis, pero sobre todo por compartir sus conocimientos, al igual que el Arq. David Pezo a quien agradezco por su exigencia, paciencia y guía para culminar con éxito la elaboración de esta tesis, un agradecimiento especial a la Asociación de Madera de Villa el Salvador por recibirme con los brazos abiertos y colaborar con la información necesaria para el desarrollo de esta tesis.

ÍNDICE GENERAL

I. RESUMEN Y ABSTRAC	8
II. INTRODUCCION	10
III. PLANTEAMIENTO DEL PROBLEMA	11
1. Problema general	13
2. Problemas específicos	13
IV. MARCO TEORICO	
1. Antecedentes	14
2. Bases teóricas	18
2.1 Desarrollo sostenible	18
2.2 Ecología industrial	20
2.3 Crecimiento económico	21
3. Conceptos y definiciones	22
V. OBJETIVOS E HIPÓTESIS	26
VI. METODOLOGÍA	26
VII. RESULTADOS Y ANÁLISIS	
Metabolismo industrial y	
el crecimiento ecológico	29
2. Medidas de ecoeficiencia y las emisiones	
contaminantes	30
 Gestión de residuos y la calidad de vida 	33
VIII. CONCLUSIONES	36
IX. RECOMENDACIONES	37
X. ANTECEDENTES DEL PROYECTO	
Sydhavns Recycling Center	38
Centro de Recursos Amager	43
3. UTE Los Hornillos	48
4. Planta de conversión de residuos en energía de Bolzano	51
Matriz de estrategias	55
6. Matriz de áreas	56
XI. DIAGNÓSTICO	57
XII. PROPUESTA DEL PROYECTO ARQUITECTÓNICO	
Programa arquitectónico	66
2. Concepto de proyecto	67
3. Criterios de diseño	67
4. Arquitectura	68
5. Conclusiones y recomendaciones generales	74
XIII. REFERENCIAS BIBLIOGRÁFICAS	75
IX. ANEXOS	77

ÍNDICE DE FIGURAS

2. 3. 4.	Pirámide hacia la sustentabilidad Inversión monetaria de la madera por pie - 2019. Cantidad adquirida en volumen de madera por mes - 2019 Cantidad de residuos de fabricación - 2019 Uso mensual de energía eléctrica (kw.h) en los talleres ubicados en el Parque Industrial de muebles en Villa	19 20 29 29 29 30
7.	el Salvador – 2019 Porcentaje de talleres que utilizan madera con certificación ecológica y aditivos ecológicos, en el Parque Industrial	31
8.	de muebles de Villa el Salvador - 2019 Dispoción de los residuos en los talleres ubicados en el Parque Industrial de muebles en Villa el Salvador - 2019	31
9.	Distribución de las emisiones por sectores de acuado al Inventario Nacional de GEI 2014	32
10.	Distribución de las emisiones en el sector Energía, de acuado al Inventario Nacional de GEI 2014	32
11.	Distribución de las emisiones en el sector USCUSS, de acuado al Inventario Nacional de GEI 2014	33
12.	Residuos sólidos no domiciliarios en el distrito de Villa el Salvador -2017	34
13.	Residuos solidos de industrias en el Parque Industrial de Villa el Salvador – 2017	34
14.	Disposición de los residuos sólidos no domésticos cuando no pasa oportunamente el recolector – 2017	35
15.	Patologías más frecuentes en los trabajadores de los talleres del Parque Industrial de Muebles- 2019	35
16.	Diagnóstico del terreno sobre los Uso de suelos por número de lotes ocupados	63
17.	Diagnóstico del terreno sobre las características de las edificaciones.	63

ÍNDICE DE TABLAS

Matriz de consistencia	27
Operacionalización de variables	28
3. Matriz de estrategias de referentes arquitectónicos	55
4. Matriz de áreas de referentes arquitectónicos	56
5. Programa arquitectónico para Centro de Reciclaje	66
INDICE DE ANEXOS	
Matriz de problemática	77
Matriz de indicadores	78

I. RESUMEN Y ABSTRACT

1. Resumen

Las industrias han generado efectos importantes en el medio ambiente, la economía y la sociedad, cuando las industrias no tienen un adecuado sistema para los procesos industriales se generan repercusiones negativas.

Durante años los Parques Industriales eran organizados y funcionaban sin un enfoque que contemple los impactos de los procesos que en ellos se realizan. Ello ha traído consecuencias negativas medioambientales, sociales y económicas por lo que los Parques Industriales deben ser replanteados desde un enfoque sostenible.

Es por ello que en el año 1989 Frosh y Galloupoulos dan lugar a la Ecología Industrial, que constituye un enfoque que propone procesos cíclicos que buscan imitar los mecanismos de los ecosistemas como reemplazo a los procesos lineales tradicionales. El objetivo de esta investigación es analizar como la ecología industrial garantiza el desarrollo sostenible en los Parque Industriales y como puede aplicarse al Parque Industrial de Muebles en el distrito de Villa el Salvador.

En este contexto es donde se aplicó una investigación de tipo explicativa analítica, con estudios de casos y controles, el diseño es cuantitativo no experimental y la muestra es probabilística, en la cual la población la constituyó los miembros de "La Asociación de Industriales en la Transformación de la Madera del distrito de Villa el Salvador ASIMVES" (CITEmadera, 2018), donde se encuesto a los representantes de 10 talleres y a tres de sus colaboradores, conformando un total de 40 encuestados, en el mes de agosto del 2019.

Palabras claves: Ecología Industrial, Desarrollo Sostenible, Metabolismo Industrial, Gestión de Residuos y Medidas de ecoeficiencia.

2. Abstract

Industries have generated significant effects on environment, economy and society, when the industrial development do not have an adequate system for industrial processes, negative repercussions are generated.

Over the years, the Industrial Parks were organized and operated without an approach that contemplates the impacts of the processes. This has brought negative environmental, social and economic consequences for which the Industrial Parks must be replaced from a sustainable approach.

That is why in 1989 Frosh and Galloupoulos gave rise to Industrial Ecology, which constitutes an approach that proposes cyclical processes that seek to imitate the mechanisms of ecosystems as a replacement for traditional linear processes. The objective of this research is to analyze how industrial ecology guarantees sustainable development in the Industrial Park and how it can modify the Villa el Salvador Industrial Furniture Park.

In this context it is where an analytical explanatory research is applied, with case-control studies, the design is non-experimental quantitative and the sample is probabilistic, in the quality of the population, the members of de "La Asociación de Industriales en la Transformación de la Madera del distrito de Villa el Salvador ASIMVES" (CITEmadera, 2018), where representatives of 10 manufacturing workshops and three of their collaborators are surveyed, making up a total of 40 members, in the month of August 2019.

Key Word: Industrial ecology, Sustainable development and Industrial metabolism.

II. INTRODUCCIÓN

El Parque Industrial de Muebles ubicado en el distrito de Villa el Salvador se planificó con el objetivo de impulsar el desarrollo económico local, lo cual no se dio de manera sostenible, afectando negativamente el crecimiento económico, aumentando las emisiones contaminantes y perjudicando la calidad de vida.

En el siguiente trabajo de investigación se realizó una recopilación de las teorías de diferentes autores, sobre lo que conlleva lograr un desarrollo sostenible en los Parques Industriales, enfocándonos principalmente en el Parque Industrial de Muebles, ubicado en el Distrito de Villa el Salvador.

Abarcamos los tres factores importantes para lograr un desarrollo sostenible: Economía, Ambiente y Sociedad; debido a que la integración armónica entre estos tres factores es obligatoria si se quiere trabajar con un enfoque de sostenibilidad.

También abarcamos lo que es la Ecología Industrial como uno herramienta para llegar a un desarrollo sostenible, mediante un óptimo metabolismo industrial que asocie el manejo de los recursos, tecnologías y residuos, así mismo la aplicación de medidas de ecoeficiencia y una adecuada gestión de residuos.

El objetivo principal de esta investigación es analizar como la ecología industrial conlleva al desarrollo sostenible del Parque Industrial de Muebles del distrito de Villa el Salvador, por lo tanto, se ha buscado obtener criterios que ayuden y faciliten a futuras propuestas y proyectos que se realicen en los parques industriales, con el fin de que los Parques Industriales se desarrollen con un enfoque de sostenibilidad.

Lo cual se puede lograr con la aplicación de la ecología industrial pues es una herramienta importante si se quiere lograr un desarrollo sostenible, debido a que los factores que abarcan son piezas claves para el funcionamiento de un Parque Industrial dentro de los criterios del desarrollo sostenible como el eficiente manejo del metabolismo industrial que beneficia el crecimiento económico debido a que se aprovecharan mejor los recursos, lo que permitirá una disminución significativa en los egresos por materia prima, otro aspecto importante es el uso de las medidas de ecoeficiencia las cuales son indispensable para lograr la reducción de emisiones contaminantes y la gestión de residuos, estos aspectos son pilares importantes para lograr un desarrollo sostenible.

III. PLANTEAMIENTO DEL PROBLEMA

Como lo indica Cervantes (2009):

El deterioro actual del planeta, como resultado de las actividades industriales, pone a la sociedad en la situación de replantear los procesos de producción, bajo un enfoque del máximo aprovechamiento de energías y recursos naturales, para lograr un desarrollo sostenible (p.18).

En dicho contexto el Parque Industrial de Villa el Salvador es zona concurrida por personas provenientes de todo Lima metropolitana, en el cual existen gran cantidad de empresas productoras en diversos rubros como artesanía, confecciones, construcción, metalmecánica, carpintería, entre otros. Los cuales están distribuidos en diferentes manzanas dependiendo del rubro. (Ramirez, 2018, pág. 2)

Se dio origen a causa de una invasión al sur de Lima el 28 de abril de 1971, cuando 200 familias en su mayoría de origen andino que estaban radicando en la zona periurbana de Lima, tomaron terrenos estatales en "la zona de Pamplona, al límite sur de Lima. La primera respuesta del gobierno fue actuar con violencia" (Benavides & La Rosa, 2000, pág. 4) y después de muchos días de oposición se logró llegar a conformidad con el Ministerio de Vivienda, que consistía en desocupar voluntariamente los terrenos ocupados para reubicarlos en una zona apropiada. Fueron entonces reubicados a una zona desértica que estaba pensada para la expansión urbana, esto se vio como una oportunidad de planificación de zonas generadoras de empleo que beneficiaran a toda la comunidad, además de zonas residenciales. (Benavides & La Rosa, 2000, pág. 3)

En primera instancia se pensó en localizar grandes industrias, pero por motivos políticos, económicos y sociales los inversionistas no estaban interesados, a pesar de ello una coalición de pequeños productores intensifican sus esfuerzos con el fin de no perder el parque industrial para la comunidad, logrando reorientar el proyecto para la mediana y pequeña empresa, siendo la carpintería de madera, carpintería metálica e industria de alimentos sus principales funciones. (Benavides & La Rosa, 2000, pág. 5)

Lo cual despertó un gran dinamismo al sur de Lima, influyendo en diferentes factores como el medio ambiente ya que según el informe anual de estadísticas medio ambientales emitido por el INEI (2019, pág. 44); En el año 2018 en la estación de monitoreo (Villa María del triunfo) cercano a Villa el Salvador se registró un índice de 133,8 µg/m³ de concentración de material particulado PM10, lo cual sobrepasa el estándar de calidad ambiental de 50,0 µg/m³.

Lo cual se puede ver reflejado en la baja calidad de vida, pues según el Ministerio de Salud (2014, pág. 99), en el distrito de Villa el Salvador las principales causas de consultas externas fueron las relacionadas a faringitis aguda, amigdalitis aguda y otras afecciones respiratorias; que estima un gran riesgo atribuible a la baja calidad del aire.

Por otra parte, el Plan regional de desarrollo concertado de Lima (IMP, 2013, pág. 292)

indica que hasta el 2013 el distrito de "Villa el Salvador, Lurín, Chorrillos, San Juan de Miraflores y Villa María del triunfo" (pág. 293), aportaban el 6.4% de producción, conformando parte del tercer estrato de las áreas de producción en la provincia de Lima con un valor de S/1 000 a S/5 000 millones anuales, a diferencia de los distritos de Cercado de Lima, San Isidro y Miraflores quienes aportaban el 44.4% de producción, ocupando el primer estrato con un valor de más de S/15 000 millones anuales, lo que evidencia una gran diferencia de S/10 000 millones, a pesar de que en Lima Sur se planificaron grandes zonas industriales como las del "Parque Industrial de Villa el Salvador" (CITEmadera, 2018) que hasta el momento está constituida por 877 empresas.

Lo que indica que hay factores que no están funcionando adecuadamente, ya que se evidencia que hay pocas oportunidades de incremento en el crecimiento económico, el cual no logra mejorar los ingresos de las industrias de manera que permita una rentabilidad económica.

De igual manera el aumento significativo en la cantidad de emisiones contaminantes en el medio ambiente genera un déficit integral en materia ambiental, debido al incremento de contaminantes en la atmósfera y al poco ahorro energético que contribuyen en el deterioro del medio ambiente. Asimismo, los bajos niveles de la calidad de vida se reflejan en las estadísticas de salud, perjudica en la realización de las potencialidades de las personas, el bienestar físico y social.

Los procesos de fabricación del Parque Industrial de Muebles hasta la actualidad se basan en un modelo lineal donde se extrae el recurso, se fabrica, se utiliza y se desecha. Es decir que en el proceso de fabricación no se toman en consideración los residuos que se generan en la fabricación ni su aprovechamiento, lo que sucede en el uso, desecho del producto y su reincorporación en la fabricación para lograr un modelo circular y a su vez una disminución de gasto en materia prima; por lo tanto, se evidencia que el diseño industrial de los productos, procesos y estrategias de fabricación no conciben parámetros ecológicos industriales.

Ello se refleja en el deficiente manejo del metabolismo industrial, ya que no se realiza el intercambio de recursos entre diversos sistemas productores, por lo tanto, el sobrante de uno no se está aprovechando para ser materia prima para otros, lo cual no promueve la implantación de una red de empresas que prosperen de manera integral, esto va de la mano con el poco manejo de las innovaciones tecnológicas que aceleren los procesos y generen menos residuos para así disminuir el uso de recurso y aprovechar mejor los materiales dentro de los sistemas de producción, de esta manera se disminuiría la presión sobre los bienes y servicios eco sistémicos.

El deficiente manejo de la gestión de residuos industriales, ya que no hay control de los residuos desde la generación hasta la disposición final que involucra la recolección, transporte, manipulación, transferencia y tratamiento.

Así mismo no se aplican las medidas eco eficientes necesarias, pues la dependencia energética convencional de las fábricas podría ser reemplazada por el uso de paneles solares, entre otros.

De no ser controlado, el parque industrial seguiría contribuyendo con el agotamiento de los recursos naturales y la contaminación perjudicando la salud de los ciudadanos y su calidad de vida, además de no disminuir los gastos en materia prima ni retribuir y aprovechar los residuos de los procesos de fabricación de cada taller. Al no generar una red de empresas se perderían muchas oportunidades de apoyo e inversión colectiva para tecnologías nuevas e innovadoras de fabricación, quedándose en un periodo de estancamiento.

Si se replantean los procesos industriales en la fabricación de muebles, tomando en cuenta el adecuado manejo del metabolismo industrial en el cual se considere una retroalimentación de los productos ya fabricados, se podría disminuir la carga en los recursos naturales; también es importante la aplicación de medidas de prevención de la contaminación y realizar una adecuada gestión de los residuos para lograr un desarrollo enfocado en la sostenibilidad.

En el caso del "Parque Industrial de muebles de Villa el Salvador" (IMP, 2013, pág. 292 y 293) el principal residuo generado por los talleres proviene de la madera, la cual puede ser tratada en una infraestructura sostenible compartida que subsane las necesidades ecológicas industriales del parque.

Es por eso que la presente investigación pretende analizar la problemática actual del parque industrial, identificando como el adecuado metabolismo industrial, las medidas de ecoeficiencia y la gestión de residuos aplicados en un determinado espacio fomenta el crecimiento económico, reduce la contaminación ambiental e incremente la calidad de vida en el Parque Industrial de muebles del distrito de Villa el Salvador.

Para abordar el objetivo general del estudio se desarrolló la siguiente pregunta de investigación:

¿Cómo la ecología industrial conlleva al desarrollo sostenible en el Parque Industrial de Muebles, ubicado en el distrito de Villa el Salvador, Lima 2018?

1. Problema General

¿Cómo la ecología industrial conlleva al desarrollo sostenible en el Parque Industrial de Muebles, ubicado en el distrito de Villa el Salvador, Lima 2018?

2. <u>Problemas Específicos</u>

- ¿Cómo un adecuado metabolismo industrial incrementa el crecimiento económico en el Parque Industrial de Muebles?
- ¿Cómo las medidas de ecoeficiencia reducen las emisiones contaminantes en el medio ambiente en el Parque Industrial de Muebles?
- ¿De qué forma la gestión de residuos industriales interviene en el incremento de la calidad de vida en el Parque Industrial de Muebles?

IV. MARCO TEÓRICO 1. Antecedentes

 Diseñar parques ecoindustriales: una síntesis de algunas experiencias Raymond P.,2016

La investigación da a conocer algunas de las experiencias de América del Norte, Europa y Japón en el establecimiento de parques ecoindustriales y opinar sobre las características esenciales de los parques ecoindustriales que surgen de esta experiencia.

La investigación concluye en que la evolución de los parques industriales hacia los ecosistemas todavía está en una etapa muy temprana. Existen caso más avanzados como el parque ecológico industrial Kalundborg en Dinamarca el cual, ha inspirado una amplia gama de proyectos en varios países, aunque algunos proyectos de investigación y diseño han intentado identificar las características esenciales de los parques eco-industriales, todavía no hay un acuerdo.

Las características esenciales de los parques ecoindustriales han sido propuestas por varios autores, entre ellos el Research Triangle Institute, Lowe y Warren, el Consejo Presidencial sobre Desarrollo Sostenible y Peck and Associates; Coinciden que comparado con un parque industrial tradicional, un parque ecológico industrial en líneas generales podría comprender la sustitución de materiales tóxicos, el intercambio de sobrantes y el tratamiento integrado de desechos, la conservación de materiales por medio de la construcción y diseño de las instalaciones, la reutilización, la recuperación y el reciclaje, entre otros aspecto que pueden surgir a medida que los parques ecoindustriales se planifican, diseñan y operan. Claramente, un parque eco industrial requiere un enfoque sistémico que comprenda las cantidades, así como las propiedades químicas y físicas de los recursos y la energía que fluye dentro y fuera del parque, además de los aspectos normativos, económicos y administrativos.

La literatura ha enfatizado el intercambio de residuos como característica dominante, los cuales son elementos importantes con perspectivas limitadas si el objetivo es la

sostenibilidad de la comunidad industrial y el ecosistema, es necesaria una perspectiva más integral que incluya aspectos ecológicos, económicos y sociales.

 Economía circular que potencie del parque de aluminio Feng Han, Yeye Liu, Wei Liu y Zhaojie Cui, 2017

El presente artículo científico concluye que la industria del aluminio en el Parque Industrial XFIP se convirtió en un clúster industrial integrado con la implementación de medidas de la Economía Circular como el control de la planificación y contaminación, simbiosis industrial y gestión refinada a nivel empresarial, industrial y de parques industriales.

Este estudio analizó los cambios dinámicos de la estructura del sistema y el rendimiento general del XFIP de 2006 a 2015 donde según los resultados, el desarrollo de la Economía Circular en el XFIP tiene grandes logros en la mejora de la industria del aluminio durante la última década. Las intensidades de consumo de energía y agua dulce se redujeron simultáneamente y se mejoró el nivel de metabolismo industrial de las materias primas.

Sin embargo, la rápida expansión de la industria del aluminio en el XFIP también expuso varios problemas: el agua y la energía limitarían el desarrollo futuro del XFIP; el mercado de productos de la industria todavía carecía de estandarización lo que indirectamente influyó en la utilización de los desechos sólidos; la industria del aluminio se enfrenta actualmente a un exceso de capacidad y requiere ajustes para satisfacer la demanda del mercado.

Para mejorar aún más el rendimiento del lugar, se proponen medidas que ayudarían a superar las limitantes. En primer lugar, las áreas administrativas del parque tendrían que ver la posibilidad de nuevos focos de inversión y evaluar las áreas que consumen mayor agua y energía, con el fin de tener un mayor control y supervisión de las mismas. Además de siempre estar actualizados en la aplicación de nuevas tecnologías que permitir el eficiente uso de agua y energía. En segundo lugar, es necesario un sistema de criterios de acceso al mercado para que los productos de la industria mejoren el grado de reconocimiento del mercado, el proceso de comercialización de productos reciclados también motivará la utilización integral de los desechos sólidos industriales.

2. Conceptos y Definiciones

2.1 Metabolismo industrial:

El metabolismo industrial implica el flujo global de recursos y energía que involucra el sistema industrial, en todo el ciclo de vida de un servicio o producto, considerando el origen del recurso incluso su disposición final en la naturaleza. (Zerpa, 2016)

El diseño de un metabolismo industrial debería estar basado en la conservación de la materia, para garantizar el funcionamiento del sistema industrial de forma integral y

armónica en el medio ambiente. Es por ello que se busca que los residuos de los sistemas industriales no generen o generen poco impacto ambiental, siendo necesario adaptar los sistemas para que nada se desaproveche, todo se transformé y circule continuamente. (Zerpa, 2016)

Según Castillo (2011) a pesar de que en muchos casos se aumenten los dispositivos de control de contaminación en las fábricas y se construyan plantas de tratamiento de residuos; aun así, hasta el más sofisticado tipo de control podrá únicamente reducir en gran medida los agentes contaminantes, pero no eliminarlos. (Castillo, 2011, Pág.5)

2.2 Medidas de ecoeficiencia

El concepto está basado en:

Crear más bienes y servicios utilizando menos recursos y generando menos residuos sólidos y contaminación ambiental. Por lo tanto, se busca lograr la creación de bienes con precios acordes al mercado y servicios que cubran las necesidades, brindando calidad de vida mientras que se reduce gradualmente los impactos medioambientales (WBCSD, 1992, Pág.5).

Además de la intensidad de recursos, a través del ciclo de vida, a un nivel que no afecte la capacidad de la tierra.

2.3 Gestión de residuos

"La gestión de los residuos se refiere a toda actividad, que implique manipular, acondicionar, recolectar, transportar, transferir, tratar u otro procedimiento, desde la creación del residuo hasta su disposición final" (OEFA, 2014).

2.4 Crecimiento Económico

Con respecto al crecimiento económico, Galindo indica que se logra alcanzar de dos formas, de forma extensiva empleando más recursos como el capital humano, natural o físico; o de forma intensiva empleando la misma cantidad de recursos, pero de manera más eficiente y productiva, de esta manera se logra aumentar el ingreso por persona, además de incrementar la calidad de vida de los habitantes, a diferencia de la extensiva. (Galindo, 2011, Pág.16)

2.5 Emisiones contaminantes

Según Largo (2009) quien nos menciona que:

El término contaminante se refiere a cualquier sustancia sumada al medio ambiente en una composición tal que tenga efectos sobre los seres, objetos y materia en general, abarcado cualquier materia natural o artificial (pág. 20).

2.6 Calidad de vida

Con respecto a la calidad de vida Ardila nos indica que es una situación de complacencia total, procedente del desempeño de las capacidades de cada habitante. Involucran

elementos subjetivos y objetivos como la percepción subjetiva de bienestar físico, psicológico y social. Comprende como elementos subjetivos la expresión emocional, intimidad, la productividad personal, la seguridad percibida y la salud objetiva. Como elementos objetivos el equilibrio con "el ambiente social y físico, el bienestar material y la salud objetivamente percibida" (Ardila, 2003, pág. 21).

2.7Simbiosis Industrial

"Simbiosis industrial basada en un modelo de emergencia de tres etapas de ecosistemas industriales que progresan de empresas que comparten el edificio buscando eficiencia económica, reconocimiento consciente de los beneficios de la red, institucionalización de creencias y normas que permiten la colaboración exitosa entre empresas." (Chertow y Ehrenfeld, 2010)

2.8 Ecoeficiencia

Según el informe emitido del Forum Ambiental WBCS (2010) en el cual mediante una concepción global de los impactos ambientales que son causados por los diferentes procesos del "ciclo de vida de un producto" (pág. 18) y la necesidad de disminuir las consecuencias ambientales, a partir de ello definen la ecoeficiencia como:

La manera de brindar bienes y servicios a un precio competitivo, que cubra las necesidades, al tiempo que disminuya gradualmente el impacto ambiental y la intensidad del uso de recursos a lo largo del ciclo de vida, que sea compatible con la capacidad de carga del planeta (WBCSD, 1992, pág. 12).

2.9 Residuos industriales

"Los residuos industriales, son procedentes de la cadena de fabricación, modificación, uso o empleabilidad, del cual se procede al abandono o desprendimiento, debido a que ya no es necesario para sus procesos de producción" (MOPTMA, 1993).

2.10 Medio ambiente

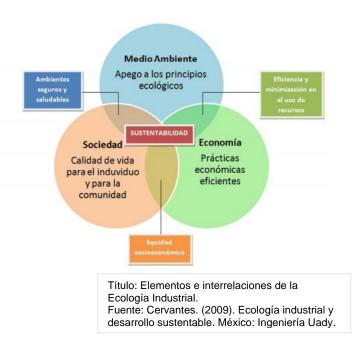
"El medio ambiente también es considerado como un sistema global complejo, de diferentes y múltiples interrelaciones, activo y cambiante, compuesto por los sistemas físico, económico, político, biológico, social y cultural en el que habita el hombre y otros organismos" (Valdés, 2000, pág.20).

3. Bases Teóricas

2.11 Desarrollo Sostenible

El Desarrollo Sostenible se acuñó por primera instancia en "la primera reunión de la Comisión Mundial sobre Medio Ambiente y Desarrollo", en 1984. Atendido por un llamado de urgencia de la Asamblea de las Naciones Unidas por motivos de concretar un programa

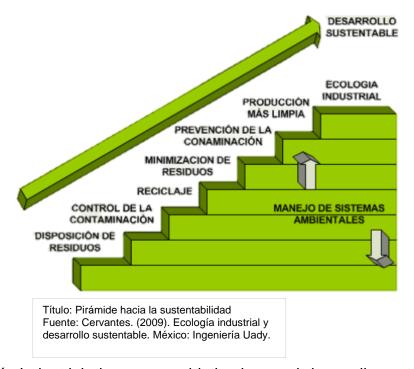
global para la transformación, con la finalidad de discutir estrategias para un futuro más próspero, seguro y equitativo. Como resultado en 1987 se difundió el informe Nuestro futuro común o nombrado también como el informe de Brundtland, en el cual se plantea lograr un crecimiento económico, teniendo como bases políticas la sostenibilidad y expansión, considerando los recursos ambientales. (CMMAD, 1987, pág. 1)


La Comisión Mundial sobre Medio Ambiente y Desarrollo (1987) planteó que el desarrollo sostenible es: "Aquel que cubre las necesidades del presente sin comprometer las posibilidades de las siguientes generaciones para satisfacer sus necesidades" (pág. 1).

Cervantes (2009) afirma que el desarrollo sostenible "se divide en tres dimensiones: ecológica, económica y social; la interacción de estas tres dimensiones debe brindar las condiciones apropiadas para el desarrollo de la humanidad y de las siguientes generaciones" (pág. 65).

Con respecto a las dimensiones ecológicas y económicas, Cervantes (2009) indica que:

La dimensión ecológica se percata en la conservación de los recursos naturales, por lo tanto, los procesos industriales, deben estar enfocados en el mayor aprovechamiento y uso óptimo de la energía y los recursos naturales (pág. 10).


Con respecto a la dimensión social Ortega (2013) afirma que "la dimensión social consiste en que todo ser humano debe tener los beneficios de educación, salud, alimentación, seguridad social, vivienda y la oportunidad de participar en la sociedad" (pág. 40).

Según Edrenfeld (1997) quien resalta que "la concepción de la Ecología Industrial con el enfoque hacia la sostenibilidad. Es la puerta hacia una forma de pensar y actuar que conduce hasta la meta del desarrollo sostenible" (pág.25).

"Ya que la Ecología Industrial, tiene como objetivo lograr el desarrollo sostenible en los diferentes niveles: global, regional o local, involucrando tres aspectos: sociedad, medio ambiente y economía. Alcanzando la interrelación, es como la Ecología Industrial busca lograr el desarrollo sostenible" (Cervantes, 2009,Pág.14).

2.12 Ecología Industrial

White (1994) indica que la ecología industrial "es el estudio de la relación de materiales o energía en la industria, y los efectos de esos flujos sobre el ambiente." (P.33). Donde el principal objetivo es que "los sistemas industriales tengan un comportamiento parecido al de los ecosistemas naturales, estimulando la comunicación entre economía, ambiente y sociedad para la eficacia de los procesos industriales" (Erkman, 2003, Pág.16).

Los antecedentes más relevantes de la Ecología Industrial se basan en la Simbiosis Industrial, Ayres (2001) indica que el motivo principal de la simbiosis industrial es concluir el ciclo de la materia, de tal manera el residuo de la primera industria se integre a otra, transformándose en materia prima de la siguiente; lo que da como la reducción de los costos económicos, ambientales y sociales. (Pág.47)

A pesar de que hay varios ejemplos de simbiosis que involucran el intercambio de materia, cascada de energía y agua y de ciclos de recuperación y reciclaje de la materia, la realidad es que los ecosistemas industriales multifacéticos son pocos y distantes. Una de las principales características de la gama actual de parques eco industriales es su diferenciación, debido a la naturaleza inherente de la configuración ecológica de los parques industriales que busca la variación adaptativa. (Raymond P., 2016, pág.43)

El objetivo de los sistemas ecológicos industriales es que el consumo de materia prima y energía disminuya a índices que la biosfera pueda sustituir, y que los sobrantes disminuyan a índices de los cuales la biosfera pueda comprender. El sistema industrial debe ser como un ecosistema, en el que se intercambian materia, energía e información, es decir, los flujos y sistemas deben mantener equilibrio con la biosfera por sí mismo. (Seoanez, 1998, pág.32)

Según Lehni (1999) una empresa logra ser eficiente cuando el proceso de fabricación disminuye gradualmente el impacto ambiental y uso de recursos, hasta la capacidad natural del planeta, a la vez que los productos y/o servicios que brindan tienen un precio competitivo a los demás (pág.15).

Los beneficios de la ecología industrial recaen en las tres dimensiones del desarrollo sostenible: sociedad, ecología y economía. Por lo tanto, al implementar la ecología industrial se generan oportunidades de aumentar las entradas de las industrias debido al eficiente uso de tecnologías, recursos y del intercambio de residuos como materias primas. Consiguiendo beneficio ambiental por la disminución de contaminantes lo que conlleva a una mejora en la calidad de vida (Cervantes, 2009, pág.12).

V. OBJETIVOS E HIPÓTESIS

1. Objetivos

1.1. Objetivo General

Determinar como la ecología industrial conlleva al desarrollo sostenible en el Parque Industrial de muebles del distrito de Villa el Salvador.

1.2. Objetivo Especifico

- Determinar cómo el eficiente manejo del metabolismo industrial incrementa el crecimiento económico en el Parque Industrial de Muebles.
- Determinar cómo las medidas de ecoeficiencia reducen las emisiones contaminantes del medio ambiente en el Parque Industrial de Muebles.
- Determinar de qué forma la gestión de residuos industriales interviene en el incremento de la calidad de vida en el Parque Industrial de Muebles.

2. Hipótesis

2.1. Hipótesis General

La ecología industrial es una buena alternativa para lograr un desarrollo sostenible en el Parque Industrial de Muebles, ubicado en el distrito de Villa el Salvador.

2.2. Hipótesis Especificas

- El eficiente manejo del metabolismo industrial beneficia el crecimiento económico en el Parque Industrial de Muebles.
- El uso de las medidas de ecoeficiencia es indispensable para lograr la reducción de emisiones contaminantes en el medio ambiente en el Parque Industrial de Muebles.
- La gestión de residuos eleva significativamente la calidad de vida en el Parque Industrial de Muebles.

VI. METODOLOGÍA

1. Métodos

1.1. Tipo y Diseño de Investigación

La presente investigación es de tipo explicativa analítica, con estudios de casos y controles; El diseño es cuantitativo no experimental y la muestra es probabilística.

1.2. Matriz de consistencia

PROBLEMA	OBJETIVO	HIPÓTESIS	VARIABLES
Problema General:	Objetivo general: Analizar	Hipótesis general:	Variable independiente:
¿Cómo la ecología industrial	como la ecología industrial	La ecología industrial es	Ecología industrial
conlleva al desarrollo sostenible	conlleva al desarrollo	fundamental para alcanzar un	Dimensiones:
en el Parque Industrial de	sostenible en el Parque	desarrollo sostenible en el	Metabolismo industrial
Muebles?	Industrial de Muebles.	Parque Industrial de Muebles.	Medidas de ecoeficiencia
			Gestión de residuos
Problemas específicos:	Objetivos específicos:	Hipótesis específicas:	industriales
- ¿Cómo el metabolismo industrial	- Analizar como el	- Un adecuado metabolismo	
influye en el crecimiento	metabolismo industrial influye	industrial benéfica el	Variable dependiente:
económico en el Parque Industrial	en el crecimiento económico	crecimiento económico en el	Desarrollo sostenible
de Muebles?	en el Parque Industrial de	Parque Industrial de Muebles.	Dimensiones:
-¿Cómo las medidas de	Muebles.	- El uso de las medidas de	crecimiento económico
ecoeficiencia reducen las	- Analizar como las medidas	ecoeficiencia es indispensable	emisiones contaminantes
emisiones contaminantes en el	de ecoeficiencia reducen las	para lograr la reducción de	calidad de vida
medio ambiente?	emisiones contaminantes en	emisiones contaminantes en el	
-¿De qué forma la gestión de	el medio ambiente.	medio ambiente.	
residuos industriales interviene en	- Analizar de qué forma la	- La gestión de residuos eleva	
el aumento de la calidad de vida	gestión de residuos	significativamente la calidad	
en el Parque Industrial de	industriales interviene en el	de vida en el Parque Industrial	
Muebles?	aumento de la calidad de vida	de Muebles.	
	en el Parque Industrial de		
	Muebles.		

1.3. Tabla de operacionalización de variables

Se utilizó la siguiente tabla de operacionalización para determinar los indicadores y definir la herramienta. (Revisar anexo 4)

OBJETIVO	VARIABLE	DIMENSIONES	SUB DIMENSIONES	INDICADORES
Analizar como la ecología industrial conlleva al desarrollo sostenible en el Parque Industrial de Muebles.		Metabolismo industrial	Materia prima Residuos	- Cantidad en volumen de madera comprada - Cantidad en volumen de residuos (industria/mes)
Analizar como el metabolismo industrial influye en el	VI: Ecología	Medidas de ecoeficiencia.	Ecoeficiencia	-Gasto monetario Energía -Material utilizado -Volumen Reciclado (industria /mes)
crecimiento económico en el Parque Industrial de Muebles.	industrial	Gestión de residuos industriales	Recogida Transporte Tratamiento	-Volumen Recogido -Disposición final -Volumen tratado -Volumen No tratado (industria / mes)
Analizar como las medidas de ecoeficiencia reducen las emisiones contaminantes en el medio ambiente. Analizar de qué forma la gestión de residuos industriales interviene en el aumento de la	VD: desarrolla sostenible	crecimiento económico emisiones contaminantes	Desmaterialización de los productos -Calidad del aire -Contaminantes solidos -Salud	- Costo monetario de la madera (industria / mes) -Cantidad Polvo atmosférico -Cantidad de contaminantes solidos -Unidad de Patologías presentes.
calidad de vida en el Parque Industrial de Muebles.		calidad de vida		

VII. RESULTADOS Y ANALISIS

Se realizó la encuesta en agosto del 2019 en 10 talleres de un total de 57 ubicadas en el Parque Industrial de Muebles de Villa el Salvador, donde se encuestó al representante del taller y a tres de sus trabajadores; Los datos medio ambientales sobre las emisiones se recogieron del Inventario Nacional de Gases de Efecto Invernadero INGEI 2014 en el Perú; Con respecto a los residuos sólidos se utilizó la data levantada mediante el monitoreo de la recolección de residuos sólidos en Villa el Salvador en septiembre del 2017, para el desarrollo de la tesis de maestría "Mejora de ingresos económicos municipales y calidad de vida por caracterización de residuos sólidos en el distrito, Villa el Salvador" (Miguel Melgarejo, 2017, p.1).

1. Metabolismo industrial y el crecimiento económico

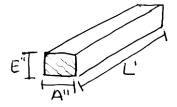
1.1 Resultado

Los gráficos reflejan el resultado arrojado por las encuestas realizadas en 10 talleres ubicados en el Parque Industrial de muebles, en el mes de agosto del 2019, en el que se evidencia que el 60% de los talleres invierten un aproximado de S/10 soles por PT de madera y el 50% de los talleres adquieren entre 1500 a 2000 pies por mes. Además, se evidencia que el 60% de talleres genera un aproximado de 8 sacos de residuos de madera por mes.

Se realizó el cálculo mediante una regla de tres entre la cantidad de residuos de madera generado en el proceso de fabricación y costo de madera para determinar la pérdida económica en los talleres.

a. Características de los sacos

- -Tipo de residuos: Retazos de madera y aserrín en proporciones variables.
- -Dimensiones: En promedio los talleres utilizan sacos de 40cmx70cmx10cm para almacenar sus residuos de madera.
- -Peso: El peso de los sacos varía de acuerdo al tipo de madera y a las proporciones de retazos de madera y aserrín, el peso puede varía entre 9 a 12kg para fines de la investigación se consideró el peso mayor.

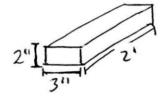

b. Características de un pie tablón

La madera es comprada en PT (Pies tablón) el PT es una medición adquirida por la industria maderera para el comercio debido a la variación de las medidas de tablones se calcula el volumen (PT) y luego es multiplicado por el costo.

Se aplicaron las siguientes fórmulas para calcular el pie tablón PT, volumen M3 y peso en KG.

Em x Am x Lm = M3(volumen)

Volumen x Densidad = KG



Ejemplo:

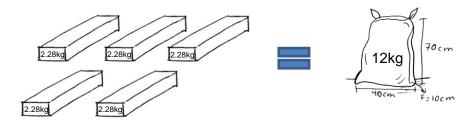
$$\frac{2" \times 3" \times 2'}{12} = 1 \text{ PT}$$

 $0.051 \text{m} \times 0.076 \text{m} \times 0.61 \text{m} = 0.0024 \text{m}$

 $0.0024m3 \times 950d^* = 2.28 \text{ KG}$

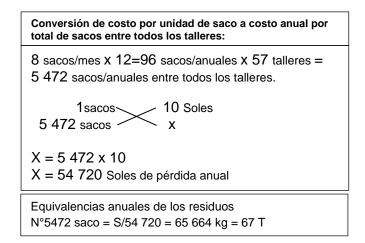
*Para calcular el peso de 1PT se consideró la densidad más alta entre de las maderas utilizadas usualmente en los procesos de fabricación:

	NOMBRE	DENSIDAD DE MADERA KG/M3
COMÚN	CIENTÍFICO	MADERA SECA
shihuahuaco	Dipteryx odorata	950
Tornillo	Cedrelinga catanaeformis	640
Cedro	Cedrela fissilis	530
Pino	Pinus radiata	480


Fuente: file:///C:/Users/pc/Downloads/densidad_cientifico.pdf

c. Equivalencia de 1 saco de residuos de madera a PT (pies tablón)

Para calcular la equivalencia entre los sacos de residuo y un pie tablón se discriminó el tipo de madera tanto de los tablones como de los residuos y se consideró el peso (kg) promedio de un saco de residuos y el peso de un pie tablón para determinar la equivalencia, teniendo como resultado una equivalencia de 5/1.

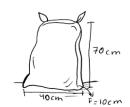


Para definir el costo de un saco de residuos se consideró el costo mínimo de 1pt en soles y se multiplicó por las unidades de tablones equivalentes a un saco de residuos, se aplicó la siguiente formula:

P: Costo mínimo de 1PT en soles

T: Unidades de tablones equivalentes a un saco de residuos

C: Costo de 1 saco de residuos



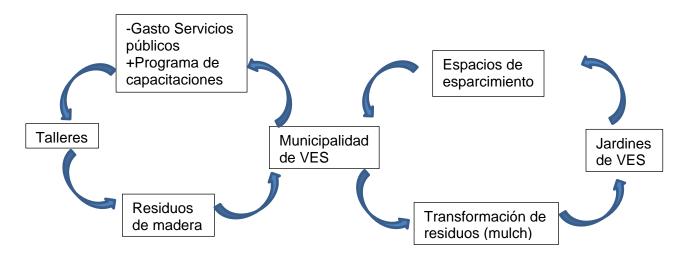
d. Volumen de residuos

Para definir el volumen de los residuos semanal, mensual y anual se calculó el volumen de los sacos para los residuos de madera utilizados usualmente en los talleres del parque industrial de muebles.

V: Volumen A: Largo

B: Ancho H: Altura $V = A \times B \times H$ $V = 40 \times 10 \times 70 \text{cm}$ V = 28 000 cm3

N° de sacos semanal en el PIM: 2(sacos/taller) x 57(n° de talleres) = 114u


N° de sacos mensual en el PIM: 114 x 4 (semanas/mes) = 456u

N° de sacos anual en el PIM: 456 x 12 (mes/año) = 5 472u

Volumen semanal de residuos: 114u x 28 000cm3 = 3 192 000cm3 = 3.192m3 Volumen mensual de residuos: 456u x 28 000cm3 = 12 768 000cm3 = 12.768m3 Volumen anual de residuos: 5 472u x 28 000cm3 = 153 216 000cm3=153.216m3

1.3 Control de caso

De acuerdo a los resultados y análisis de la equivalencia de los residuos de madera de los talleres traducido en pérdida económica, se identificó que los 57 talleres en un año tienen una pérdida de S/ 54 720. Para subsanar esta pérdida económica se plantea trabajar con un programa integrado de colaboración con La Municipalidad de Villa el Salvador en el que se intercambiaría residuos de madera por descuento en pagos de servicios públicos y capacitaciones, la Municipalidad de Villa el Salvador sería el encargado de tratar y transformar el residuo de madera a madera chipeada o también conocida como mulch que es usado en el diseño paisajista como elemento decorativo y como abono natural, el cual sería utilizado como una alternativa para los parques y alamedas de Villa el Salvador.

a. Capacitaciones

Las capacitaciones estarían dirigidas principalmente a los trabajadores de los talleres de PIM también puede acceder arquitectos, ingeniero, diseñadores y público en general. N° de participantes: Se consideró a 4 integrantes por cada taller (57), siendo un total de 228 posibles participantes de los talleres del PIM.

Tipo de capacitaciones: Teóricas y practicas

Tipo de aula: salón y talleres

Objetivo: Enseñar a los talleres nuevas tecnologías, conceptos ecológicos, entre otros.

Para calcular el número de aulas se estableció un horario tentativo para la participación de 230 personas con asistencia fuera del horario laboral dos veces por semana y sábado en el horario de 8:00 am a 10:00pm.

Características de las clases						
	Participantes	20				
	Hora	6 horas a la semana				
	Regularidad	2 clases semanales				

Н	LUNES		MARTES	;	MIERCOLES	JUEVES		VIERNES	S	SABADO)	
8:00										Aula	Α	Taller B
11:00										(sec.7)		(sec.8)
										Taller	В	Aula A
										(sec.7)		(sec.8)
11:00										Aula	Α	Taller B
14:00										(sec.9)		(sec.10)
										Taller	В	Aula A
										(sec.9)		(sec.10)
16:00										Aula	Α	Taller B
18:00										(sec.11)		(sec.12)
										Taller	В	Aula A
										(sec.11)		(sec.12)
19:00	Aula	Α	Aula	Α	Taller B	Taller	В	Aula	Α	Aula	Α	
22:00	(sec.1)		(sec.2)		(sec.1)	(sec.2)		(sec.3)		(sec.6)		
	Taller	В	Taller	В	Aula A (sec.4)	Aula	Α	Taller	В	Taller	В	
	(sec.4)		(sec.5)			(sec.5)		(sec.6)		(sec.3)		

En la semana la capacidad de aula A y Taller B puede recibir 12 secciones de 20 participantes cada uno, logrando en total 240 participantes por semana. Se recomienda considerar un aula y un taller adicional para futuras capacitaciones.

b. Cantidad y Almacenamiento de los residuos de madera del PIM

Para el almacenamiento de los residuos se consideró un flujo semanal de recojo de residuos en los talleres, que serán almacenados en contenedores que sumen una capacidad total de 4m3 como mínimo.

Para fines del proyecto arquitectónico se propone utilizar el contenedor volteable de la marca ISM contenedores de 1.090m H x 1.45m L x 1.58m A con capacidad de 2.5m3, el almacén para los residuos de madera debe contar con las siguientes características mínimas:

Contenedores: 3 contenedores de 1.090m H x 1.45m L x 1.58m A

Área: 7.5m2

Perímetro: 4.35m x 4.74m

c. Máquinas para el tratamiento de los residuos

Los residuos de la madera deben pasar por una cinta de inspección para descartar y separar manualmente cualquier contaminación con otro tipo de residuos que se puedan haber filtrado, posterior a ello el recurso pasa por la máquina trituradora para obtener viruta y astillas de madera, para luego pasar por la cinta transportadora e imán para descartar algún elemento metálico, luego el 30% del recurso natural conocido como mulch natural

se empaqueta y almacena, el otro 70% pasa por un proceso de coloración orgánica en una maquina mezcladora manual para obtener el mulch colorido finalmente ser empaquetado y almacenado. Las máquinas necesarias para el proceso de transformación de residuos de madera de los talleres serían los siguientes:

EQUIPO	MARCA	Kw	DIMENSIONES m	ÁREA DE EQUIPO m2	U
Cinta de inspección	Bunting Magnetics Co	0.55	1.00x6.00m H:0.90m	6 m2	1
Escalera	Bunting Magnetics Co	0.55	1.00x2.50m	2.5 m2	1
Máquina trituradora	Harden – Trituradora de doble eje – serie TD	60- 400	4.39x0.6m H:2.18	2.6 m2	1
Cinta transportadora	Transportador de palo de hockey GFC	/	1.00x8.00m	8 m2	1
Iman para cinta transportadora	Bunting Magnetics Co-Magnetic Crossbelt Conveyor	/	1.40x0.762m	1.1 m2	1
Cilindro abierto Mezclador manual	Fabricación local	-	2.00Lx1.00d	2 m2	1
Depósito móvil de acero	Fabricación local	-	1.0x1.0x H:1.00m	1 m2	4
Empaquetadora	Ensaca - mini ensacadora		0.90x0.90m H:1.34	0.81 m2	1

d. Características y uso del recurso final

Pasado el proceso de transformación se obtiene el Mulch natural y el Mulch colorido, el cual es utilizado principalmente como fertilizante en jardines además de proporcionarle color y vigor al paisaje.

Tipo: Mulch natural o colorido

Composición: Virutas y astillas de maderas variadas y colorante orgánico rojo, naranja y

azul.

Volumen: 4m3 por semana

Uso: Parques y alamedas de Villa el Salvador Rendimiento: 225m2 de área por semana

Descomposición: En climas tropicales de 2 a 3 meses y en climas templados de 3 a 5

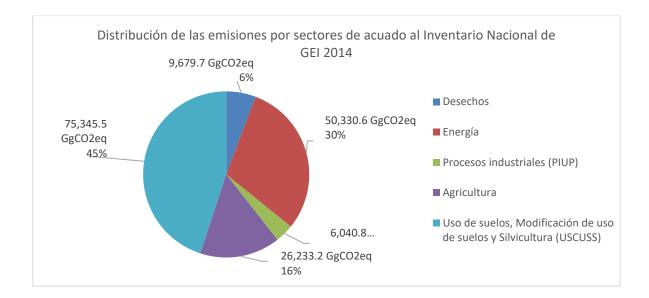
meses aproximadamente.

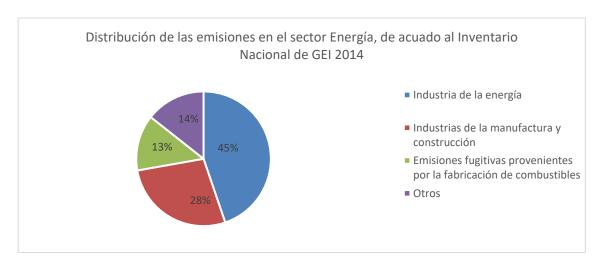
Beneficios: Fertiliza, protege las plantas de temperaturas extremas de frio y calor, reduce la evaporación del agua, reduce la continuidad de riego y sirve como elemento paisajístico.

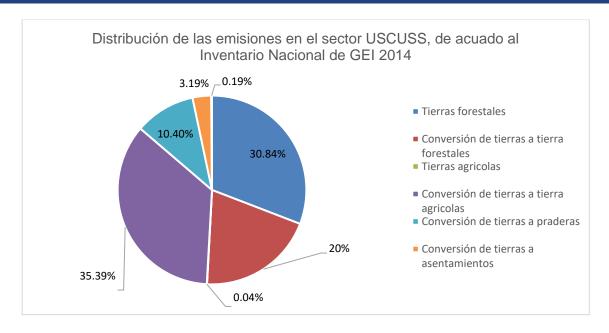
2. Medidas de ecoeficiencia y las emisiones contaminantes

2.1. Resultado

Con respecto al gasto energético mensual, el 70% de los talleres manifiesta pagar entre S/150 a S/250 mensual por servicio de energía eléctrica, El 30% manifestó que esporádicamente gastan entre S/200 a S/300.


En cuanto al uso de madera certificada y aditivos ecológicos para la fabricación de muebles y acabados de construcción, los datos arrojan el resultado de la encuesta levantada en 10 talleres ubicados en el Parque Industrial de muebles, en el mes de agosto del 2019, en el cual se evidencia que el 70% de los talleres no utiliza madera certificada y solo el 30% lo ha utilizado a solicitud del cliente, ningún taller encuestado tiene como norma la compra de madera certificada.


En cuanto a las emisiones contaminantes, el gráfico refleja los datos recogidos en la última actualización del inventario nacional de gases de efecto invernadero 2014 en el Perú, donde se visualiza que el país supera los 167,629.8 GgCO2eq. Donde el 45% corresponde a Uso de Suelos, Modificación de Usos de Suelos y Silvicultura (75 345.5 GgCO2eq) y el 30% corresponde a Energía (50,330.6 GgCO2eq) siendo los dos sectores con mayor aporte de emisiones de GEI del Perú. (pág. 14)


En el sector de Energía la principal fuente de emisión fue en la subcategoría Industria de la energía correspondiente a todo el proceso para generar energía eléctrica con 45%, seguido de Industria de la manufactura y construcción 28%, las emisiones fugitivas provenientes por la fabricación de combustibles fueron de 13% y las demás subcategorías corresponden el 14%. (INGEI, pág. 23)

En cuanto a los Usos de suelos y cambios de usos de suelos por silvicultura, los datos evidencian que la inicial fuente de emisión es la subcategoría de Conversión de tierras a tierras agrícolas con 35.39%, seguido de las tierras forestales que siguen funcionando como tierras forestales con 30.84% y con el 20% la conversión de tierras a tierras forestales. (INGEI, pág. 28)

2.2. Análisis

a. Consumo energético en los talleres

Para determinar el consumo energético en un taller se consideró el promedio de gasto mensual de energía eléctrica S/200 y el tarifario proporcionado por Osinergmin mayo 2019. (Osinergmin , 2019)

Tensión: Baja tensión

Tipo de tarifa: BT5B con simple medición de energía 1e

Cargo fijo mensual: S/2.70 mensual Cargo por energía activa: S/0.5179

Total de importe facturado: S/200 (Incluido gastos públicos)

Consumo a facturar: ¿? kwh

Para calcular el consumo a facturar, es decir consumo energético Kwh utilizado por un taller al mes, también se consideró los gastos públicos ya que todos conformar parte de la producción de energía, se aplicó la siguiente formula:

Consumo a facturar =
$$\frac{S/200}{S/0.5179}$$

Consumo a facturar = 386.17 Kwh

Lo que nos indica que un taller del Parque Industrial de Muebles de Villa el Salvador consume 386.17 Kwh en un mes y los 57 talleres en conjunto consumen 22 011.69 Kwh en un mes.

b. Contaminación por consumo energético

Para determinar las emisiones de Co2 producidas por consumo energético en los talleres del parque industrial de muebles, se aplicó la siguiente formula:

Emisión de Co2 de 1 kwh: 0.41 kg (CeroCo2, 2020) Consumo energético en un taller: 386.17 Kwh

Consumo energético en los 57 talleres: 22 011.69 Kwh

Emisión de Co2 = Consumo Kwh x 0.41 Kg

Emisión de Co2 = 386.17 x 0.41 Kg Emisión de Co2 = 158.33 Kg

Lo que nos indica que por consumo eléctrico un taller del parque industrial de muebles genera 158.33 Kg de emisión de Co2 y los 57 talleres en conjunto general 9024.79Kg de emisión de Co2 al mes.

2.3. Control de caso

Los resultados evidencian que uno de los sectores con mayor aporte a las emisiones contaminantes en el Perú es la industria de la energía y dado a que en los talleres el uso de energía eléctrica convencional se traduce en 9 024.79 kg de Co2 por mes, se propone plantar árboles para absorber la contaminación de Co2 ya producida por los talleres y utilizar energía renovable como una alternativa para reducir las emisiones contaminantes. En cuanto al uso de madera certificada se propone generar convenios y acuerdos que favorezcan el uso de madera certificada, además es primordial concientizar a los talleres y a la población en la importancia del uso de madera certificada.

a. Plantación de arboles

Se propone implementar una zona de plantaciones para mitigar las emisiones contaminantes, utilizando árboles para absorber el Co2 generado por los talleres. Un árbol absorbe entre 0.83 kg a 2.5 kg de Co2 al mes y brinda un 4.5% del aire que necesita una persona. (Fundación Aquae, 2016)

Absorbe Co2: 2.5kg/mes

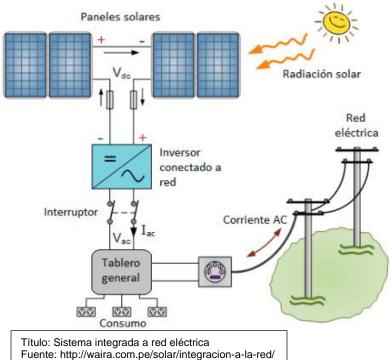
Genera Co2: 158.33kg/mes

158.33 = 63 arboles 2.5

Se necesitan 63 árboles para absorber el Co2 generado por un taller al mes.

Título: Calculo de zona de mitigación Edición: Propia

b. Energía renovable para los talleres del PIM


Se propone utilizar paneles solares fotovoltaicos en los talleres del parque industrial de muebles, con el fin de mitigar las emisiones de Co2 por el uso de energía proveniente de la quema de combustibles fósiles.

Lugar: Taller de PIM

Consumo energético en un taller al mes: 386.17 Kwh Consumo energético en un taller al día: 12.87 Kwh Tipo de energía renovable: Energía fotovoltaica Tipo de sistema: Sistema integrada a la red

Sistema integrada a red			Panel solar		
N° de Paneles	10u		Modelo SUN 72P		
Potencia	3 300w		Potencia	330w	
Dimensión	19.5m x 9	9.9m	Dimensión	1.95x0.99m	
Área	193.05m ²	2	Área	1.93m ²	
Peso	225 kg		Peso	22.5 kg	
Cobertura eléctrica	12.87 Kw	h 100%	Cobertura eléctrica	1.3 Kwh 10%	
Inversión	S/16 000	*	Inversión	S/1 600*	
Accesorios					
Inversor on-grid		Marca Steca c	on control Solar-log		
Restrictor de flujo		Evita el retorno	o a la red.		
Beneficios					
Económicos -Baja inversión y costos de mantenimiento -Reducción del recibo de consumo eléctrico -No perjudica la producción, de necesitarlo la energía provista por la red eléctrica local ininterrumpidamente.					
Ambientales		-Sistema simple, sin uso de bateríasMitiga las emisiones Co2, la energía adicional alimenta la red eléctrica local.			

*Precio aproximado Fuente: Waira energía y movilidad sostenible, Ing. Franco Canziani 2020.

c. Uso de madera certificada para los talleres del PIM

En el Perú la oficina nacional de certificación forestal es el FSC Perú, reconocida y acreditada por la organización internacional Forest Stewardship Council FSC desde el año 2010, es una entidad compuesta por varias empresas y personas interesadas en la gestión forestal sostenible y la certificación desde la posición de los intereses económicos, ambientales y sociales. Existen tres tipos de certificaciones: "Certificación de manejo forestal, Certificación de cadena de custodia y certificados de madera controlada". (FSC, 2019)

Manejo forestal: Otorgada a administradores o propietarios de bosques cuyas prácticas de manejo cumplen los requisitos de los Principios y Criterios del FSC o el estándar nacional FSC Perú.

Cadena de Custodia: Dirigida a fabricantes, procesadores y comerciantes de productos forestales certificados FSC. Este tipo de certificación verifica que los productos que se venden con etiqueta FSC realmente contienen materiales certificados FSC y fuentes controladas.

Madera Controlada: Emitida a productos provenientes de bosques que no están certificados FSC, pero si están verificados como fuentes incontrovertidas de productos forestales.

Título: Tipos de certificación FSC

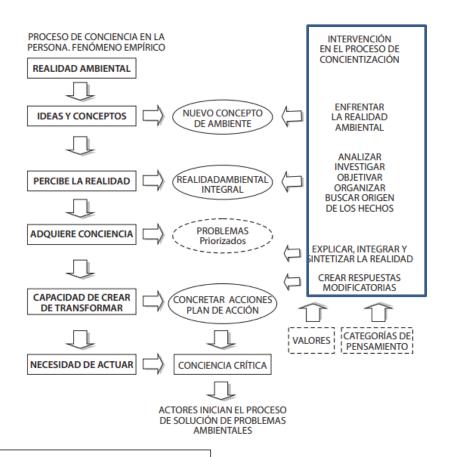
Fuente: https://pe.fsc.org/es-pe/certificacin/tipos-de-certificados-fsc

Debido a que las certificaciones de madera controlada y madera de manejo forestal se otorgan principalmente en los bosques forestales ubicados fuera de Lima, se propone utilizar la certificación de Cadena de Custodia para la compra de madera certificada para los Talleres del Parque Industrial de Muebles, con la finalidad de prevenir complicaciones en el traslado y minimizar las emisiones de carbono en el transporte. (Ver Anexo 3)

Según la lista de Datos y Cifras (FSC Perú, 2020) las organizaciones certificadas en Lima, cercanas al Parque Industrial de Villa el Salvador son las siguiente:

C. CADENA DE CUSTODIA COC						
Organización	Cod.	N°	Ubicación	Distrito	Rubro	
	Certificado	Licencia				
Perú Green Designs	CU-COC-	FSC-	Lima	Villa	Productos de madera	
S.A.C	811449	C001713		Maria		
Formas Universales	CU-COC-	FSC-	Lima	Chorrillos	Empaquetadora de Papel	
S.A.C	867994	C154606				
Maderera Bozovich	SGSCH-	FSC-	Lima	Lurín	Maderera	
S.A.C	COC-002228	C002646				
E&J Matthei Maderas	NC-COC-	FSC-	Lima	Lurín	Maderera	
del Perú S.A.	004164	C003499				
Comercializadora	SGSCH-	FSC-	Lima	Lurín	Productores de Carbón	
Napa Trading S.A.C	COC-800019	C149777				
Comercial Maderera	CU-COC-	FSC-	Lima	Lurín	Maderera	
Andina S.R.Ltda	855091	C156866			(Seleccionados)	

Fuente: https://pe.fsc.org/es-pe/nuestroimpacto/datos-y-cifras



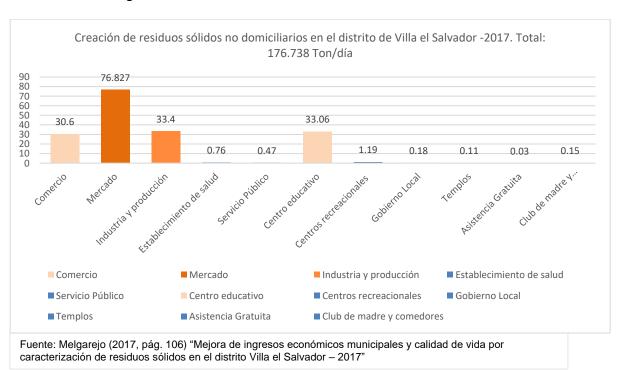
Se propone realizar convenios y acuerdos con las organizaciones Maderera Bozovich S.A.C y E&J Matthei Maderas del Perú S.A. para impulsar e incentivar el uso de madera certificada FSC en el Parque Industrial de Muebles.

d. Modelo de la concientización para el Parque Industrial de Muebles

Se propone aplicar el modelo de concientización de Freire del Programa de sensibilización social del año 1999, el cual une el proceso natural de adquisición de conciencia en una persona y a intervención que se realice para progresivamente superar la conciencia natural hasta lograr la conciencia crítica para proporcionar la capacidad de intervenir y cambiar la realidad. (Lawrence, 2008)

Título: Modelo de concientización ambiental Fuente: file:///C:/Users/pc/Downloads/Dialnet-LaConcientizacionDePauloFreire-4015700.pdf

Mediante una intervención orientada se busca incidir en la motivación de las personas para valorar los temas ambientales, individuales y para la localidad con el fin de tener un panorama sobre la realidad objetiva y cultural. (Lawrence, 2008) Para fines del proyecto se propone intervenir en el Parque Industrial de Muebles de la siguiente manera:

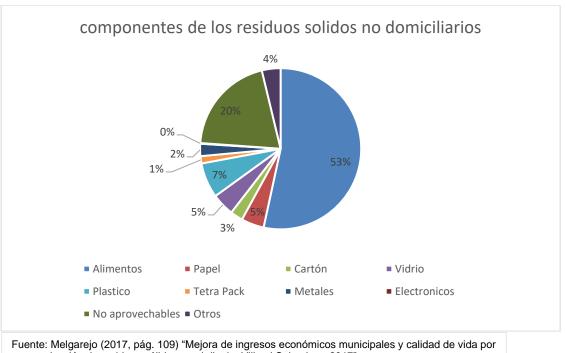

INTERVENCIÓN EN EL PROCESO DE CONCIENTIZACIÓN							
PROCESO	INTERVENCIÓN	HERRAMIENTA					
Enfrentar la realidad	Informar sobre la perdida de	Paneles fotográficos y videos					
ambiental	los bosques y biodiversidad						
Examinar, indagar,	Informar sobre la	Gráficos demostrativos del impacto					
objetivar, planificar,	deforestación ilegal y	que genera la deforestación ilegal					
buscar origen de los	consecuencias en el Perú						
hechos							
Explicar, integrar y	Reforzar el problema y sus	Muro informativo y actividad para					
sintetizar la realidad	consecuencias	conocer cuál ha sido el aporte de					
		los consumidores					
Crear respuestas	Informar sobre la	Actividad de identificación del icono					
modificatorias	certificación FSC y su labor	FSC					

3. Gestión de residuos y la calidad de vida

3.1. Resultados

a. Residuos no domiciliarios

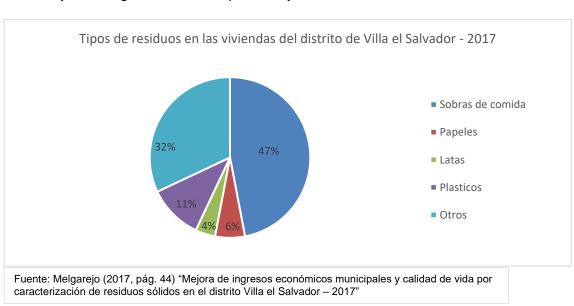
Con respecto a la creación de residuos sólidos no domiciliarios en el distrito de Villa el Salvador, los datos evidencian que el uso que genera más residuos sólidos son los mercados, seguido de las industrias.



Con respecto a la generación de residuos sólidos en las industrias ubicadas en el distrito de Villa el Salvador, en el estudio los datos que se obtuvieron mediante el monitoreo de la recolección en 4 industrias durante 3 días, en septiembre del 2017, en el que se evidencia que la industria de muebles genera una media de 9 kg/día. (pág. 84)

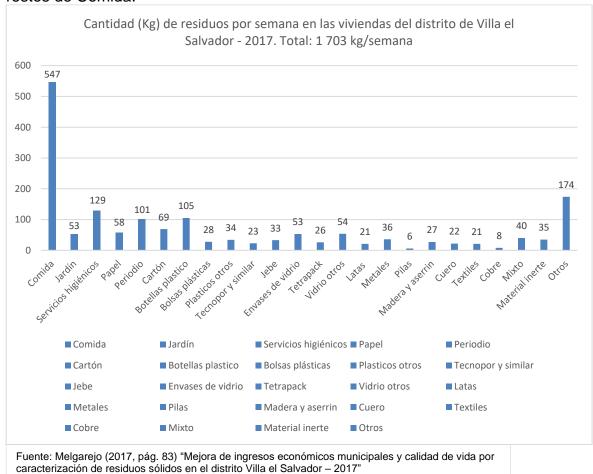
caracterización de residuos sólidos en el distrito Villa el Salvador - 2017'

Con respecto a la disposición de los residuos las encuestas realizadas en 10 tallares ubicados en el Parque Industrial de muebles, en el mes de agosto del 2019, evidencian que el 70% de los talleres regala los desperdicios a recicladores informales, lo cual no permite un control adecuado de los residuos.



En cuanto al servicio de recolección, los datos evidencian que cuando el camión recolector no pasa oportunamente, el 52% de las personas bota sus desechos en el botadero más cercano.

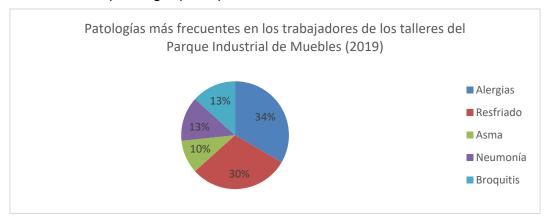
b. Residuos Domiciliarios


En cuanto a residuos domiciliarios, según los datos del monitoreo realizado en las viviendas del distrito de Villa el Salvador los residuos que predominan son las sobras de comida y la categoría de otros que incluye cartones, metales, vidrios, entre otros.

Según Melgarejo (2017, pág. 63) en el distrito de Villa el Salvador se produce 0.632 Kg de residuos por habitantes en un día. En el cual el residuo que más predomina son los restos de Comida.

En cuanto a la disposición final de los residuos sólidos, en el estudio realizado se preguntó a los encuestados:

Qué hacen cuando no pasa adecuadamente el camión recolector, dando como resultado que el 52% coloca sus desechos en el botadero más cercano, el 8% asegura que quema los residuos, mientras que el 24% afirmo que almacena los residuos hasta que pase el recolector. (pág. 78)



c. Patologías frecuentes en los trabajadores del PIM

Sobre las patologías más frecuentes en los trabajadores, los datos se obtuvieron de las encuestas realizadas a 30 trabajadores de los talleres de fabricación de muebles y acabados para construcción ubicados en el Parque Industrial de Villa el Salvador en el año 2019, en el que se evidencio que el 34% de los trabajadores señalan las alergias respiratorias como patología principal.

Los resultados evidencian que el segundo uso que genera más residuos sólidos no domiciliarios son las industrias con 19%, siendo la industria de muebles aportante de una media de 9kg/día. Además, se evidencio que el 52% de las personas encuestadas afirmaron que cuando el recolector de basura no pasa oportunamente llevan sus residuos al botadero más cercano. Una situación parecida ocurre con los residuos domiciliarios donde se determinó que por día un habitante genera 0.632kg y el 52% de los encuestados indicaron que cuando el recogedor de basura no pasa oportunamente llevan sus residuos al botadero más cercano. Referente a las patologías el 34% de los trabajadores del sector industrial de muebles señala las alergias respiratorias como patología principal, seguido de resfriados con el 30%.

3.2. Análisis

a. Volumen de residuos no domiciliarios

Para el cálculo de volumen de residuos se aplicó la siguiente formulas:

V: Volumen en m3 M: Masa en Kg D: Densidad

$$V = \underline{M}$$

Según los datos levantados en el monitoreo de los desechos de las viviendas del distrito de Villa el salvador en la investigación de Melgarejo (2017, pág. 91) la densidad suelta promedio de los residuos no domiciliarios es de 136.52 Kg/m3.

Debido a la calidad y variación de la composición de los residuos, para fines de la investigación se utilizará la densidad suelta promedio de los residuos domiciliaros para obtener un aproximado de los volúmenes de cada residuo.

Para calcular la masa en Kg de cada tipo de residuos se utilizó el porcentaje de composición de los residuos y el peso total 1 703 kg/semana de todos los desechos no domiciliarios.

CARAC	CARACTERÍSTICAS DE DESECHOS NO DOMICILIARIOS					
RESIDUOS	COMPOSICIÓN	DESECHOS kg/semana	VOLUMEN			
	%		m3/semana			
Alimentos	53.40	909.4	6.64			
Papel	4.57	77.8	0.57			
Cartón	2.52	42.9	0.3			
Vidrio	4.53	77.15	0.56			
Plástico	7.05	120.1	0.88			
Tetra pack	1.46	24.9	0.2			
Metales	2.47	42.1	0.31			
Electrónicos	0.13	2.21	0.02			
Otros re- aprovechables	3.76	64	0.47			
No aprovechables	20.11	342.5	2.5			

b. Volumen de residuos domiciliarios

Para el cálculo de volumen de residuos se aplicó la siguiente formulas:

V: Volumen en m3 M: Masa en Kg D: Densidad

$$V = \underline{M}$$

Según los datos levantados en el monitoreo de los residuos de las viviendas del distrito de Villa el salvador en la investigación de Melgarejo (2017, pág. 82) la densidad suelta promedio de los residuos domiciliarios es de 197.342 Kg/m3.

Debido a la calidad y variación de la composición de los residuos, para fines de la investigación se utilizará la densidad suelta promedio de los residuos domiciliaros para obtener un aproximado de los volúmenes de cada residuo.

CARACTERÍSTICAS DE RESIDUOS DOMICILIARIOS				
RESIDUOS	RESIDUOS	VOLUMEN		
	kg/semana	m3/semana		
Comida	547	2.8		
Jardín	53	0.27		
Servicios higiénicos	129	0.65		
Papel	58	0.29		
Periódico	101	0.51		
Cartón	69	0.35		
Botellas plásticas	105	0.53		
Bolsas plásticas	28	0.14		
Plásticos otros	34	0.17		
Tecnopor y similar	23	0.12		
Jebe	33	0.17		
Envases de vidrio	53	0.27		

CARACTERÍSTICAS DE RESIDUOS DOMICILIARIOS				
RESIDUOS	RESIDUOS	VOLUMEN		
	kg/semana	m3/semana		
Vidrio otros	54	0.27		
Tetrapack	26	0.13		
Latas	21	0.11		
Metales	36	0.18		
Pilas	6	0.04		
Madera y aserrín	27	0.13		
Cuero	22	0.11		
Textiles	21	0.11		
Cobre	8	0.04		
Mixto	40	0.20		
Material inerte	35	0.18		
Otros	174	0.88		

3.3. Control del caso

Se propone implementar un programa de reciclaje de residuos no domiciliarios y domiciliarios de participación ciudadana activa, con el fin de mitigar la carga sobre el sistema de recolección municipal de residuos sólidos. Los residuos re-aprovechables serán almacenados por la municipalidad para luego ser recogidos por empresas de reciclaje, encargadas de tratar y transformar los residuos.

a. Reciclaje para los residuos no domiciliarios y domiciliarios

Debido al parecido de la composición de los tipos de residuos no domiciliarios y domiciliarios, se trabajó en conjunto ambas categorías para definir el peso y volumen total de cada tipo de residuos y facilitar la selección de las empresas recicladoras con potencial a tratar los residuos según su tipo.

EMPRESAS RECICLADORAS PARA LOS RESIDUOS NO DOMICILIARIOS Y DOMICILIARIOS				
RESIDUOS				
RESIDUOS	kg/semana	m3/semana	RECICLADORA	PRODUCTO O SERVICIOS
Alimentos	1 456.4	9.44	Lima compost	Compost
Jardín	53	0.27		
Servicios higiénicos	129	0.65		
Papel	135.8	0.86	Unga	Merchandising y papelería
Periódico	101	0.51	Ecológica	Merchandising
			comunicaciones	
Cartón	146.8	0.65	A caminar	Comercialización sin fin de lucro
Botellas plásticas	195	1.19	San Miguel Industrias	Envases
·			PET	
Bolsas plásticas	28	0.14	Fussion	Cuero plastico
Plásticos en	64	0.39	Plásticos ecológicos	Tela
general			del Perú	
Tecnopor y similar	23	0.12		
Jebe	33	0.17		
Envases de vidrio	91.6	0.55	Vidria	Vasos y recipientes
Vidrio en general	92.6	0.55	Perú en vidrio	Esculturas
Tetrapack	50.9	0.33	Cartotek S.A.	Tejas y cartón
Latas	21	0.11	A caminar	Comercialización sin fin de lucro
Metales	78.1	0.49	Emaus reciclaje	Comercialización sin fin de lucro
Pilas	6	0.04	Recipack	Tratamiento y comercialización
Madera y aserrín	27	0.13	Proyecto municipal	Mulch orgánico
Cuero	22	0.11	Ikreo Perú	Moda ecológica
Textiles	21	0.11	Ikreo Perú	Moda ecológica
Cobre	8	0.04	Recipack	Tratamiento y comercialización
Material inerte	35	0.18	Ciclo	Ladrillos
Electrónicos	2.21	0.02	Recipack	Tratamiento y comercialización
Otros	580.5	3.85		

b. Almacenamiento para los residuos

Se determinaron las dimensiones de los contenedores necesarios para almacenar los diferentes tipos de residuos se tomó encuentra el volumen de los residuos en m3 por semana.

CONTENEDORES PARA ALMACENAMIENTO						
TIPO DE	MASA	VOLUMEN	CONTENEDOR	CAPACIDAD	DIMENSIONES	AREA
RESIDUOS	kg/semana	m3/semana		m3		M2
Alimentos	1 456.4	9.44	Emotag – One top	13 m3	5.00 x 2.35 x 1.29	11.75
Botellas	195	1.19	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
plásticas			nacional			
Papel	135.8	0.86	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
			nacional			
Cartón	146.8	0.65	Fabricación nacional	1.44 m3	1.20 x 1.20 x 1.00	1.44
Envases de	91.6	0.55	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
vidrio			nacional			
Vidrio en	92.6	0.55	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
general			nacional			
Periódico	101	0.51	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
			nacional			
Metales	78.1	0.49	Fabricación	1.44 m3	1.20 x 1.20 x 1.00	1.44
			nacional			
Plásticos en	64	0.39	Fabricación	0.72 m3	0.6 x 1.20 x 1.00	0.72
general			nacional			
Tetra pack	50.9	0.33	Fabricación	0.72 m3	0.6 x 1.20 x 1.00	0.72
			nacional			
Material	35	0.18	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
inerte			nacional			
Bolsas	28	0.14	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
plásticas			nacional			
Latas	21	0.11	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
			nacional			
Cuero	22	0.11	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
			nacional			
Textiles	21	0.11	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
			nacional			
Madera y	27	0.13	Fabricación	0.36 m3	0.6 x 0.6 x 1.00	0.36
aserrín			nacional			
Pilas	6	0.04	Fabricación	0.16 m3	0.4 x 0.4 x 1.00	0.16
			nacional			
Cobre	8	0.04	Fabricación	0.16 m3	0.4 x 0.4 x 1.00	0.16
			nacional			
Electrónicos	2.21	0.02	Fabricación	0.16 m3	0.4 x 0.4 x 1.00	0.16
			nacional			
Tota:	2 582					25.91

4. CONCLUSIONES

1. Mediante el análisis de las encuestas realizadas a 10 talleres ubicados en el Parque Industrial de muebles de Villa el Salvador, se ha llegado a conocer que los talleres de fabricación de muebles y acabados de construcción en el Parque Industrial de Villa el Salvador generan en promedio de 65.6 t/a de residuos de madera. Mediante la conversión de residuos de madera y costo monetario, se llegó a conocer que el desaprovechamiento de los residuos se traduce en una pérdida de 54 720 soles anuales. Se propone establecer un programa de intercambio entre los talleres y la municipalidad, en el cual se intercambien residuos de madera de los talleres por descuentos en gastos de servicios públicos y programas de capacitaciones que impulsen a los talleres.

Para el tratamiento de los residuos de madera, se debe implementar un sistema de transformación de residuos basados en máquinas trituradoras para obtener Mulch, una cobertura orgánica para jardines que cuenta con múltiples beneficios entre ellas el bajo mantenimiento y el aporte al atractivo paisajístico. Este material es una posible solución para los parques de Villa el salvador.

- 2. Mediante las encuestas se determinó que el 70% de los talleres no utiliza madera certificada y solo el 30% lo ha utilizado en algún momento a solicitud del cliente, en su mayoría no sabían sobre la certificación de la madera, por ello es importante generar convenios con madereras que faciliten el consumo de madera certificada. Se determinó que las más cercanas al Parque Industrial son la maderera Bozovich S.A.C y E&J Mattheu madereras del Perú S.A. ubicadas en Lurín. De igual manera es importante concientizar a los representantes de los talleres sobre la compra de madera certificada para el proceso y a la población sobre la compra de productos hechos con madera certificada, se plantea usar diferentes herramientas en el espacio público que informen sobre la situación actual, la solución y que refuercen el mensaje adquirido.
- 3. Mediante el análisis de consumo eléctrico se determinó que un taller genera 158.33 kg de emisiones de Co2 por consumo energético que aportan a la contaminación ambiental. Una solución para mitigar la contaminación es mediante el uso de energías renovables, en la investigación se determinó mediante el cálculo de requerimiento energético que un taller necesitaría un sistema conectado a red de 10 paneles solares y una inversión de 16 000 soles, la cual se recuperaría en 6 años aproximadamente pagando mensualmente lo mismo que pagan por el recibo de luz.
- 4. Se determinó que Villa el salvador genera 160 299 kg de residuos no domiciliarios donde predominan el residuo de los mercados, seguido de las industrias y producción. El 52% de las empresas afirmaron que desechan sus residuos en el botadero más cercano cuando el recolector de basura no pasa oportunamente. Algo parecido ocurre con los residuos domiciliarios, los cuales generan más de 1 703 Kg de residuos a la semana, el 53% desechan sus residuos en el botadero más cercano cuando el recolector de basura no pasa oportunamente. Implementando convenios con empresas recicladoras se podría mitigar la carga a recolectores municipales y se re-aprovecharían 2 582 kg de residuos domiciliarios y no domiciliarios por semana.

5. RECOMENDACIONES

- 1.Se recomienda aplicar un proyecto para fomentar la reutilización de los residuos de la madera y generar un incentivo que se puede reflejar en fondos de inversión para tecnología, capacitación y servicios compartidos para los talleres, se sugiere tomar como base el Manual de Implementación para Parques Eco-Industriales de la ONUDI.
- 2.Es importante concientizar y capacitar a los talleres en temas medio ambientales, particularmente sobre el uso de recursos naturales, los efectos que conlleva en el medio ambiente y las formas de mitigarlo, con el fin de reducir la carga en los recursos naturales. Además de aplicar un proyecto integrado de segregación de residuos sólidos con participación activa de los ciudadanos, para concientizar sobre la reducción, reutilización y reciclaje de los residuos.
- 3. Se plantea implementar un Centro de Reciclaje con ambientes aptos para la capacitación de trabajadores de los talleres, ambientes abiertos para la concientización de los ciudadanos, espacios de investigación para la búsqueda de una mejora continua en los procesos de fabricación, servicios compartidos de máquinas de alta tecnología que maximicen el uso de recurso y zonas de segregación de residuos que invite a la participación activa de los ciudadanos.

VIII. ARTICULACIÓN DE INVESTIGACIÓN Y PROYECTO ARQUITECTÓNICO

Según los resultados, análisis y control de casos, se plantea implementar un equipamiento arquitectónico que contribuya con las necesidades evidenciadas en el control de casos:

- -Aulas y talleres para capacitaciones
- -Planta de tratamiento de residuos de madera
- -Aplicación de energía renovable
- -Promoción de madera certificada
- -Almacenamiento de residuos no domiciliarios y domiciliarios
- -Herramientas de concientización en el espacio publico

Espacios para capacitaciones

De acuerdo a la investigación se necesita un aula de clases y un taller para cubrir la asistencia de 240 personas a la semana, repartidas en 12 secciones de 20 personas. Para fines del proyecto se considerará un aula y un taller adicional para capacitaciones externas y futuro crecimiento del parque industrial.

Por las características de los talleres se propone implementar capacitaciones teóricas y/o prácticas, que deberán realizarse en aulas y en talleres de carpintería.

El objetivo es enseñar a los talleres nuevas tecnologías, conceptos ecológicos, técnicas, entre otros.

Para definir el N° de estudiantes en el establecimiento en los 4 ambientes de estudio en un rango de 3 horas, el índice considerado es de 20 estudiantes, siendo un total de 80 estudiantes.

1.1. Norma A.040 educación aplicada al proyecto

Según la norma de educación A.040, los criterios básicos que deben cumplir las aulas y talleres de capacitación para 80 personas en el Parque Industrial de Muebles son los siguientes:

siguioritos.				
ILUMINACIÓN Y VENTILACIÓN				
Ventilación	Permanente alta y cruzada			
Vanos	20%			
ILUMINACIÓN ART	TFICIAL			
Aulas	250 luxes			
Talleres	300 luxes			
Circulaciones	100 luxes			
Servicios higiénicos	75 luxes			
ÁRE	ÁREAS DE EVACUACIÓN Y CIRCULACIÓN			
Salas de uso múltiple	1.0 m2/ p			
Salas de clase 1.5 m2/p				
Talleres 5.0 m2/p				
Bibliotecas	5.0 m2/p			
Administrativo	10.0 m2/p			
PUERTAS				
Tipo Batiente hacia afuera				
Ancho mínimo 1.00 m				
Cantidad 2 puertas para más de 40 personas en un ambiente				
ESCALERAS				
Ancho 1.20m con pasamanos al lado				

Para definir el número de servicios se considera la asistencia de 80 estudiantes en un rango de 3 horas.

	SERVICIOS HIGIÉNICOS
Hombres	2 lavamanos, 2 urinarios y 2 inodoros
Mujeres	2 lavamanos y 2 inodoros

Fuente:http://ww3.vivienda.gob.pe/DGPRVU/docs/RNE/T%C3%ADtulo%20III%20Edificaciones/38%20A.040%20EDUCACION.pdf

Debe proporcionar servicios sanitarios para todo el personal, de acuerdo con lo establecido para oficinas A.080.

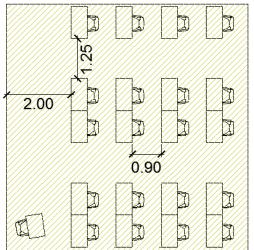
SERVICIOS HIGIÉNICOS ADMINISTRATIVO			
Hombres 1 lavamanos, 1 urinarios y 1 inodoros			
Mujeres 1 lavamanos y 1 inodoros			

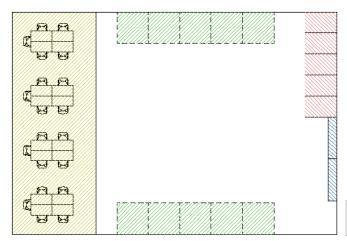
Fuente:http://ww3.vivienda.gob.pe/DGPRVU/docs/RNE/T%C3%ADtulo%20III%20Edificaciones/42%20A.080%20OFICINAS.pdf

-Dotación de agua: 25 lts. x alumno x día.

1.2. Organigrama institucional

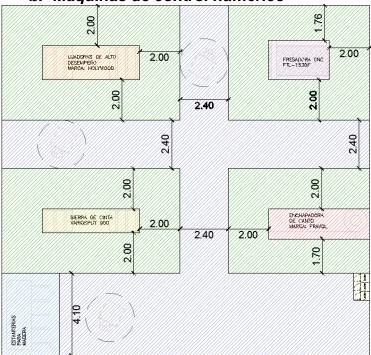
Para fines del proyecto se estableció un organigrama tentativo para la organización de las capacitaciones en el Parque Industrial de muebles, con un personal de siete trabajadores en total. Para fines de cálculos de área y servicios se considerará diez trabajadores.




1.3. Programa general

a. Prototipo de aulas y talleres

ÁREA AULA		
PROTOTIPO DE AULA	60 M2	


Título: Prototipo de aula Edición: Propia

ÁREA TALLER	
MESAS DE TRABAJO	42.4 M2
ESPACIO PARA TRABAJOS	22.5 M2
RACKS PARA PIEZAS	15 M2
HERRAMIENTAS	1.6 M2
TOTAL	164.3 M2

Título: Prototipo de taller Edición: Propia

b. Máquinas de control numérico

ÁREAS DE MAQUINAS DE CONTROL NUMÉRICO				
SIERRA VARIOSPLIT 900	5.82M2			
LIJADORA HOLYWOOD	8.245M2			
FRESADORA CNC FTL-1530F	5.816M2			
ENCHAPADORA DE CANTO FRAVOL	7.5M2			
ESTANTERIAS PARA MADERA	11.744M2			
LOCKERS	1.061M2			
ÁREA DE OPERACIÓN	145.384M2			
ÁREA DE CIRCULACIÓN	131.98M2			
TOTAL	317.55 M	 2		

Título: Prototipo de zona de maquinas Edición: Propia

c. Resumen de programa

Ambiente	Tipo	Aforo	Cantidad (u)
Sala de usos	Semi-abierto	30	1
múltiples			
Aulas	Cerrado	20	2
Talleres	Cerrado	20	2
Maquinas	Cerrado	20	1
Auditorio	Abierto	300	1
Administrativo	Cerrado	10	1

2. Planta de transformación de residuos de madera

De acuerdo a la investigación se determinó que los residuos deben ser almacenados en 3 contenedores volteables de 2.5m³ de la marca ISM de 1.090m x 1.45m.

Se determinó el proceso y las máquinas para el tratamiento de residuos basados en máquinas trituradoras y cintas transportadoras, teniendo como resultado compost orgánico mulch.

2.1. Norma A.060 industria

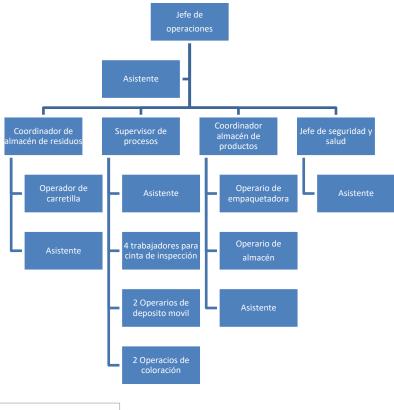
Según la norma de industria A.060, los criterios básicos que debe cumplir la planta de transformación de residuo en el Parque Industrial de Muebles son los siguientes:

ILUMINACIÓN NATURAL			
Oficina	Mínimo el 20% de la área del recinto		
Comedores y cocina			
ILUMINACIÓN ARTIFICIAL			
Oficina	250 luxes		
Planta de tratamiento	300 luxes		
Depósito y apoyo	50 luxes		
Comedores y cocina	220 luxes		
Servicios higiénicos	75 luxes		
Circulaciones	100 luxes e iluminación de emergencia		

VENTILACIÓN					
Oficina	Ventilación natural				
Comedores y cocina	Ventilación natural				
Servicios higiénicos Mediante ductos según norma A.010					
VENTILACIÓN ARTIFICIAL					
Planta de	Sistema mecánico de ventilación con				
tratamiento	control de partículas				
Depósito y apoyo	Sistema mecánico de ventilación				

SISTEMAS DE SEGURIDAD
Detectores humo y temperatura
Sistema de rociadores de agua
Extintores Co2
Extintores de polvo químico
Hidrantes y mangueras

Como lo establece la norma A.060, para la dotación de servicios se considerará la cantidad de personas que trabajan en el equipamiento en su capacidad total. Para fines del proyecto el número de personas que se considerará es 21.


SERVICIOS HIGIÉNICOS		
No mayor de 30m del puesto de trabajo más lejano		
Ss.hh. Hombres	2 lavamanos, 2 urinarios y 2 inodoros	
Ss.hh Mujeres	2 lavamanos y 2 inodoros	
Duchas	2 duchas	
Vestuarios	30 m2	
Comedor y cocina Servicios higiénicos adicionales		

Fuente:http://ww3.vivienda.gob.pe/DGPRVU/docs/RNE/T%C3%ADtulo%20III%20Edificaciones/40%20A.060%20INDUSTRIA.pdf

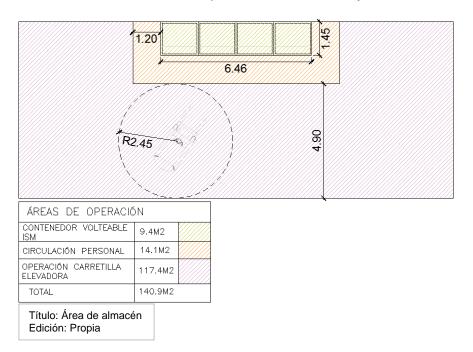
-Dotación de agua: 100 lts. x trabajador x día.

2.2. Organigrama para el funcionamiento de la Planta de transformación

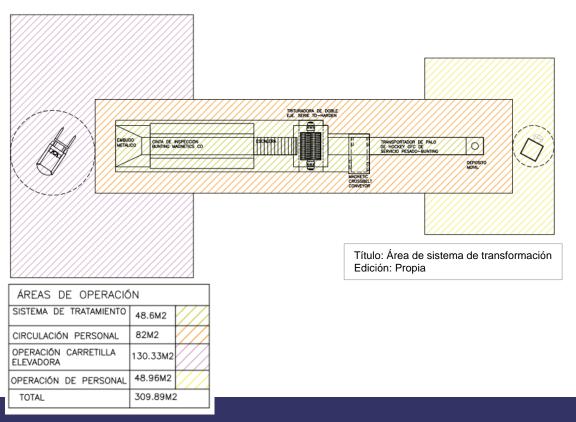
Para fines del proyecto se estableció un organigrama tentativo de acuerdo al personal necesario para el funcionamiento de máquinas y a las funciones respectivas, en el cual se determinaron 21 trabajadores en primera instancia.

Título: Organigrama de Planta de

transformación Edición: Propia

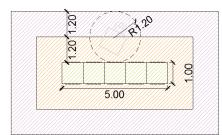


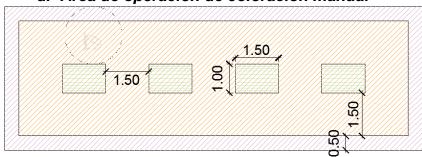
2.3. Programa general


a. Área de operación en almacén de residuos

Para fines de cálculo se consideró 4 contenedores ISM y se utilizó la carretilla elevadora Mitsubishi serie FB con radio de giro de 2.45m. Para la operación en los almacenes se necesita 1 coordinador, 1 operador de carretilla y 1 asistentes.

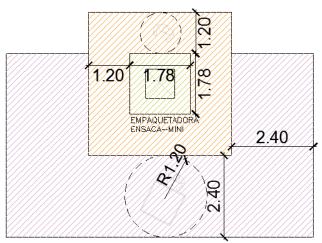
b. Área de operación de sistema de transformación


Según las maquinas definidas en la investigación, se estableció el sistema de transformación de residuos de madera, en la cual se necesita 1 supervisor, 1 asistente y 4 trabajadores para la cinta de inspección.


c. Área de operación en depósito móvil

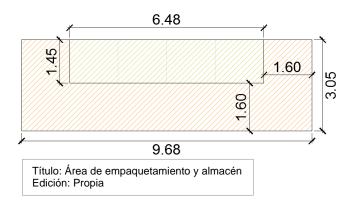
ÁREAS DE OPERACIÓ	ĎΝ
DEPOSITO MOVIL	5 M2
CIRCULACIÓN PERSONAL	20.16M2
ÁREA DE MANIOBRAS	31.68 M2
TOTAL	56.84 M2

Título: Área de depósito Edición: Propia


d. Área de operación de coloración manual

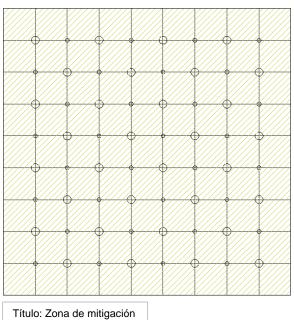
ÁREAS DE OPERACIÓN				
CILINDRO, MEZCLA MANUAL	6 M2			
CIRCULACIÓN PERSONAL	48M2			
ÁREA DE MANIOBRAS DE HERRAMIENTA	18.5 M2			
TOTAL	72.5 M2			

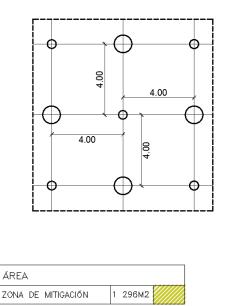
Título: Área de coloración manual Edición: Propia


e. Área de operación en empaquetamiento y almacenaje

ÁREAS DE OPERACIÓN				
EMPAQUETADORA ENSACA	3.16 M2			
OPERACION DE PERSONAL	///////			
OPERACIÓN DE DEPOSITO MOVIL	35.84 M2			
TOTAL	53.3 M2			

ÁREAS DE OPERACIÓN			
RACK ALMACÉN	9.4 M2		
OPERACION DE PERSONAL	20.1 M2		
TOTAL	29.5 M2		


f. Resumen de áreas


Ambiente	Aforo	Índice	Cantidad (u)	Área
Almacén de residuos	3		1	140.9m ²
Sistema de	6		1	309.89m ²
transformación		Comérc		
Depósito móvil	2	Según	1	56.84m ²
Coloración manual	2	proceso	1	72.5u
Empaquetamiento	2		1	53.3m ²
Almacenamiento	2		1	29.5 m2
Oficina	4	10.0m2	1	40m2
Total	21			702.93

3. Zona de mitigación

Según el desarrollo de la investigación se necesitan 63 árboles para absorber la contaminación de Co2 generada por un taller al mes.

Para calcular el área necesaria para la zona de mitigación se consideró una plantación cuadrada de 4 x 4m a eje central de plantación. (Fonam, 2007, pág. 13)

Edición: Propia

Se propone utilizar variedad de árboles nativos e introducidos en la ciudad de Lima de poco requerimiento de agua para facilitar el mantenimiento, se recomienda colocar carteles informativos en cada uno de ellos para facilitar y favorecer el aprendizaje de cada especie.

ARBOLES PARA ZONA DE MITIGACIÓN				
Nombre científico	Origen	Característica	Tamaño	Flores
Acacia sp.	Nativa	Xerofita	Mediana estatura	amarillas
Ligustrum sp.	Introducida	Xerofita	4 m	blancas
Araucarea excelsa	Introducida	Xerofita	20 m	Marrones
Casuarina equisetifolia	Introducida	Xerofita	25 a 30m	
Cedrela odorata	Introducida	Xerofita	15 a 20 m	
Ceiba pentandra	Nativa	Xerofita	25 m	
Ficus carica	Introducida	Xerofita	Mediana estatura	Blancas
Acacia macracantha	Nativa	Xerofita	Mediana estatura	Amarillas
Tecoma sambucifolia	Nativa	Xerofita	2 m	Amarillas
Jacaranda mimosifolio	Introducida	Xerofita	10 a 15 m	moradas
Pouteria lúcuma	Nativa	Xerofita		
Magnolia grandiflora	Introducida	Xerofita	Mediana estatura	Blancas
Schinus molle	Nativa	Xerofita	10 a 12 m	Blancas
Sambucus peruviana	Nativa	Xerofita	5 m	Blancas
Tipuana tipu	Introducida	Xerofita	10 a 15m	Amarilla

Título: Arboles para zona de mitigación Edición: https://www.academia.edu/27845216/Libro_Arboles_de_Lima

4. Aplicación de energía renovable

Calculo de potencia requerida para determinar el número de paneles necesarios para el adecuado manejo de las máquinas para el proceso de transformación:

EQUIPO	W	h/d	Wh/día	Kwh/día
Máquina trituradora de cuatro ejes	15 000	0.15	2 250	2.25
Cinta de inspección y escalera	550	4	2 200	2.2
Máquina trituradora de doble eje	11 750	4	47 000	47
Cinta transportadora	550	4	2 200	2.2
Imán para cinta transportadora	3 000	4	12 000	12
Empaquetadora	500	5	2 500	2.5
Total o	Total de potencia requerida Wh/día			68.15

Para el determinar el número de paneles a utilizar en el proceso de transformación, se utilizó el mismo sistema y modelo propuesto para un taller, se aplicó la siguiente formula:

X= n° de paneles

PR= Potencia requerida

PP= Cobertura eléctrica de un panel

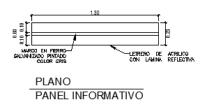
X= <u>PR</u> PP

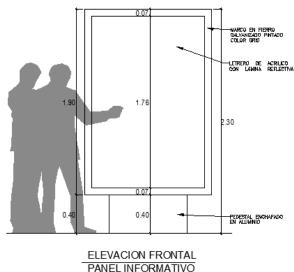
X= n° de paneles PR= 68.15 Kwh

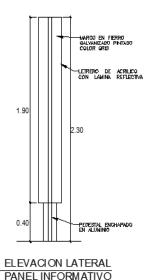
PP= 1.3 Kwh

X= <u>68.15 kwh</u> 1.3 kwh X= 53 u

Sistema integrada a red		Panel solar		
N° de Paneles	53 u	Modelo	SUN 72P	
Potencia	3 300w	Potencia	330w	
Dimensión	19.5m x 9.9m	Dimensión	1.95x0.99m	
Área	10 231m ²	Área	1.93m ²	
Peso	1 192.5 kg	Peso	22.5 kg	
Cobertura eléctrica	68.9 Kwh 100%	Cobertura eléctrica	1.3 Kwh 10%	
Inversión	S/84 800*	Inversión	S/1 600*	


5. Concientización sobre la madera certificada


En el desarrollo de la investigación se determinó la importancia de concientizar a los consumidores y productores sobre el uso de madera certificada, a través del modelo de cotización de Freire la cual se basa en intervenir en la conciencia natural enfrentando la realidad ambiental, buscando el origen de los hechos, sintetizando y creando respuestas; Mediante herramientas en el espacio público se busca intervenir en casa proceso.


5.1. Enfrentar la realidad

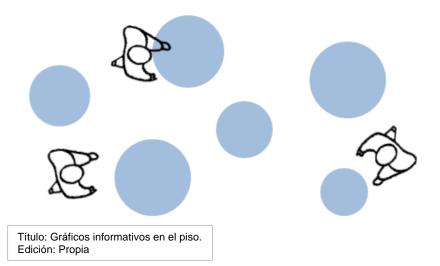
En este proceso la persona conoce el problema, para ello se informa mediante paneles fotográficos y videos sobre la perdida de los bosques y biodiversidad.

Los paneles fotográficos y de videos sobre la perdida de bosques y biodiversidad, deben estar ubicados en el mayor punto de afluencia de personas.

Título: Panel informativo

Fuente: Municipalidad de San Isidro

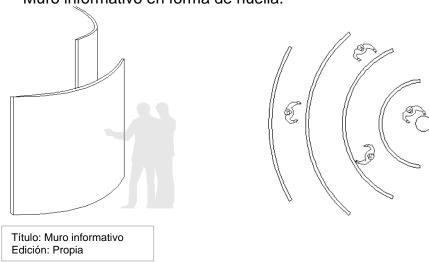
Edición: Propia


5.2. Analizar y buscar el origen

En este proceso la persona empieza a cuestionarse e interesarse más en el problema. Para ello se informa sobre la deforestación ilegal y consecuencias en el Perú mediante gráficos demostrativos.

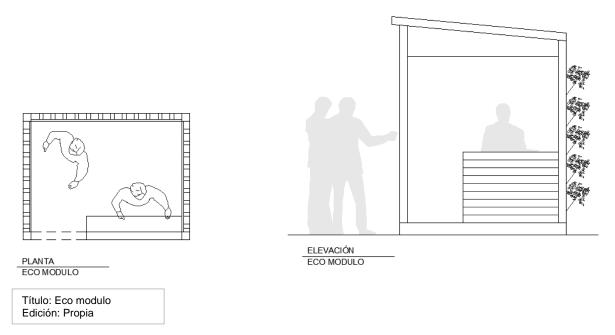
- Pinturas en el piso del diámetro de las especies taladas y datos estadísticos de la cantidad de árboles talados en el año.

CARACTERÍSTICAS DE LAS MADERAS MAS UTILIZADAS EN LOS TALLERES DEL PIM PARA GRAFICOS E INFORMACIÓN					
NOMBRE		CARACTERÍSTICAS			
COMÚN	CIENTÍFICO	ALTURA TOTAL	ALTURA COMERCIAL	DIAMETRO	CRECIMIENTO
Shihuahuaco	Dipteryx odorata	40m	15 m	1.00m	600 años
Tornillo	Cedrelinga catanaeformis	40m	15 a 25m	1.20m	10 a 15 años
Cedro	Cedrela fissilis	25 a 50m	15m	0.60 a 0.90	12 a 13 años
Pino	Pinus radiata	40m	15 a 25m	1.00m	20 años


Fuente: http://iiap.org.pe/Upload/Publicacion/CDinvestigacion/inia/inia-p4/inia-p4-31.htm

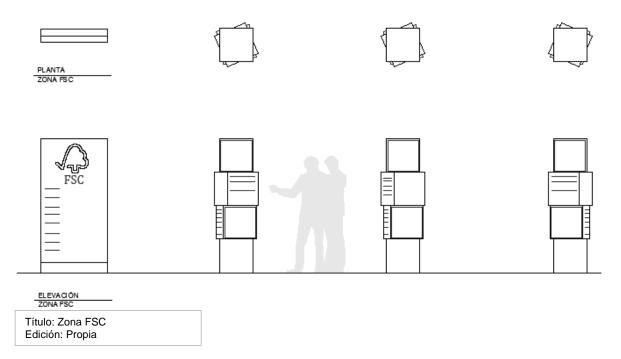
5.3. Explicar, integrar y sintetizar la realidad

En este proceso se refuerza la realidad y sus consecuencias, mediante muros informativos y actividades en las que el consumidor conozca su aporte.


- Muro informativo en forma de huella.

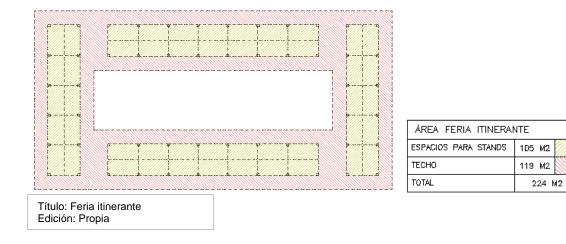
- Estación de Eco modulo, en este módulo se brindará información y se entregarán semillas para plantar.

Espacio de conmemoración a las especies en peligro de extinción:
 Exposición en la que cada luminaria representa un animal en peligro de extinción en el Perú a causa de la deforestación como el Oso andino, cóndor andino, mono de cola amarilla, danta, cortarramas peruano. (National Geographic, 2020)



5.4. Crear respuestas modificatorias

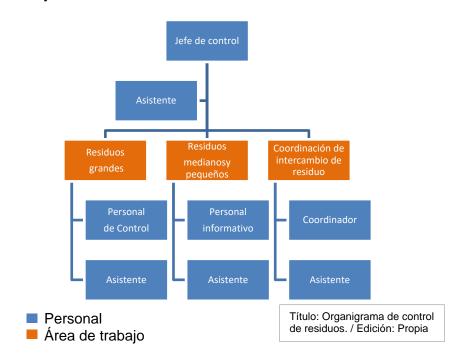
En este proceso la persona conoce sobre la certificación FSC y la identifica como una posible solución de la que pueden ser partícipes, para ello se propone implementar los módulos informativos y ferias itinerantes.


a. Módulos informativos

- Modulo del icono FSC, en el cual se deben mostrar los objetivos y lo que se debe cumplir para tener una madera certificada, mediante escalones o cumplimientos
- Torre informativa de FSC sobre los aportes en el ámbito ambiental, social y económico.

b. Ferias itinerantes

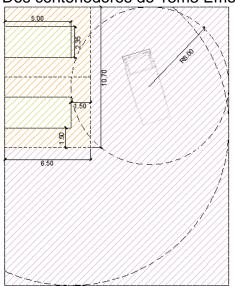
Las ferias están dirigidas a todo el público y en ella participan principalmente los 57 talleres, el objetivo es exponer variedad de productos que utilizan madera certificada en la fabricación. Se propone construir una cobertura fija que brinde espacios para la instalación de stands de 1.00 x 2.00mm.



6. Almacenamiento de residuos no domiciliarios y domiciliarios

En el desarrollo de la investigación se determinó el número de contenedores necesarios para el almacenamiento de los residuos re- aprovechables no domiciliarios y domiciliarios, siendo en total 19 contenedores como mínimo, 1 contenedor de 13m³, 7 contenedores de 1.44m³, 2 contenedores de 0.72m³, 6 contenedores de 0.36m³ y 3 contenedores de 0.16m³.

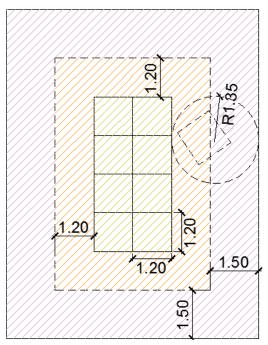
6.1. Organigrama de control


Para fines del proyecto se estableció un organigrama tentativo de acuerdo al personal necesario para el funcionamiento y control de la zona de almacenamiento de residuos domiciliarios y no domiciliarios.

6.2. Programa general

a. Contenedor de 13m³

Dos contenedores de 13m3 Emotag – One top 5.00 x 2.35 x 1.29


	<u> </u>		
ÁREAS	DE OPERACIÓN		
CONTENEDOR EMOTAG ONE TOP		23.5 M2	
CIRCULACIÓN		36.5 M2	
RADIO DE GIRO DE CAMIÓN		290.85M2	
TOTAL		350.85 M2	
	Título: Contenedores de 13m³ Edición: Propia		

b. Contenedores de 1.44m³

7 contenedores de 1.44m3 de fabricación nacional de 1.20 x 1.20 x 1.00m.



ÁREAS DE OPERACIÓN		
CONTENEDORES 1.44M3	11.52M2	
CIRCULACIÓN	23.04M2	
GIRO DE CONTENEDOR D:2.7M	45M2	
TOTAL	79,56M2	

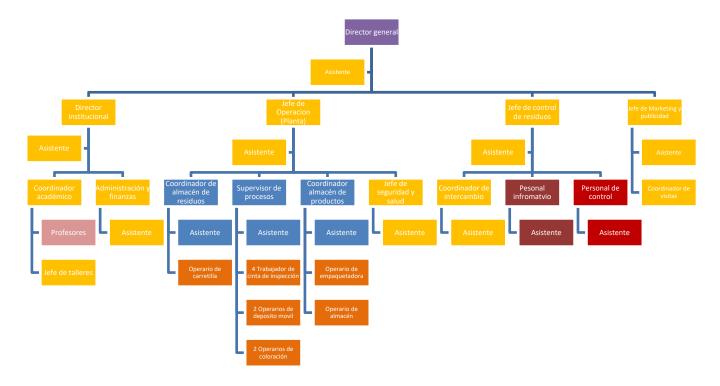
Título: Contenedores de 1.44m³ Edición: Propia

c. Contenedores de medidas variadas

Contenedores de 1.44m3, 0.72m3, 0.36m3, 0.16m3 de fabricación nacional.

ÁREAS DE OPERACIÓN		
CONTENEDORES 0.72M3	1.44M2	
CONTENEDORES 0.36M3	2.16M2	
CONTENEDORES 0.16M3	0.64M2	
CIRCULACIÓN	16.32M2	
GIRO DE CONTENEDORES D:2.5M	30.68M2	
TOTAL	51.68M2	

Título: Contenedores de menor tamaño Edición: Propia


d. Resumen de áreas

Ambiente	Acceso	Área
Contenedor de 13m3	Semi-	350.85m ²
	publico	
Contenedor de 1.44m3	Publico	79.56m ²
Contenedores variados	Publico	51.68m ²
Total		482.09m ²

7. Organigrama general

AMBIENTE	#Personas
Oficina	19
Planta de transformación	11
Sala de control	6
Caseta informativa	2
Caseta de control	2
Personal no fijo	Variable

Título: Organigrama general Edición: Propia

IX. ANTECEDENTES DEL PROYECTO

1. Sydhavns Recycling Center

1.1. Ubicación

El proyecto arquitectónico cuenta con un área de 15000m2 y está ubicado en Copenhague, Dinamarca; donde el 42% de los residuos se recicla, solo el 6% termina en un vertedero. Es por ello la importancia de las estaciones de reciclaje en Dinamarca, ya que son parte principal para mejorar la extracción de recursos de los residuos domésticos, en dichos lugares las personas pueden dejar sus residuos reciclables de forma gratuita y en algunos casos reciben una bonificación o recompensa. (Gyldholm, BIG, 2011)

1.2. Datos generales

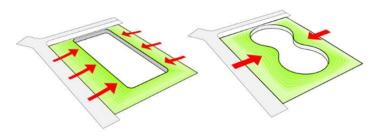
Sydhavns Recycling Center se concibe como un espacio público en lugar de una pieza de infraestructura aislada, convirtiendo los espacios urbanos en áreas atractivas y animadas en los vecindarios. La colina alberga instalaciones para ejercicios, miradores, pistas de

atletismo y áreas de picnic. Desde la cresta del cráter, los ciudadanos pueden mirar dentro de la plaza de reciclaje y aprender sobre el viaje de los materiales reciclados, los cuales están ilustrados gráficamente en el interior de la pared del cráter. (Gyldholm, 2011)

1.3. Vistas

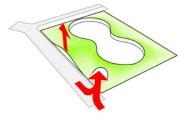
1.4. Conceptualización

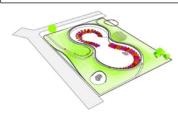
El proyecto se basa en la teoría del ciclo circular de producción, en el que el residuo de lo fabricado debe regresar al proceso de fabricación, para así consumir menos recursos naturales. (Gyldholm, BIG, 2011)



Título: Abstracción del ciclo circular Fuente: BIG http://www.big.dk/#projects-gbs

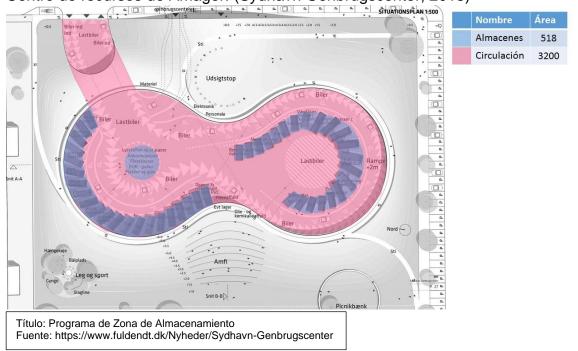
Una generosa área verde en todo el terreno que será interrumpido por una colina hueca de concreto donde estará el depósito.


Los lados del centro de reciclaje fueron empujados para adentro para crear mas espacio para realizar actividades dentro de la pendiente.


Los autos pueden ingresar al centro por el lado noreste, se crea un espacio peatonal y se mejora el ingreso de la luz en el centro de reciclaje. Las pendientes verdes estan destinadas a diferentes actividades y el camino alrededor da la oportunidad de ver y aprender acerca de los procesos de reciclaje.

Título: Concepto

Fuente: BIG http://www.big.dk/#projects-gbs

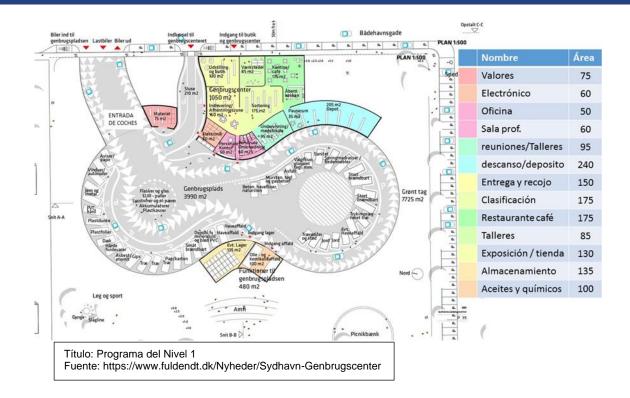


1.5. Zonificación general

El centro de reciclaje cuenta con una gran Zona de almacén, una Casa múltiple y Áreas de integración.

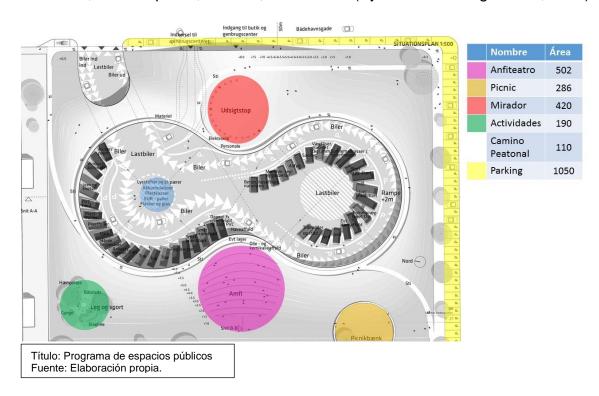
a. La zona de almacén

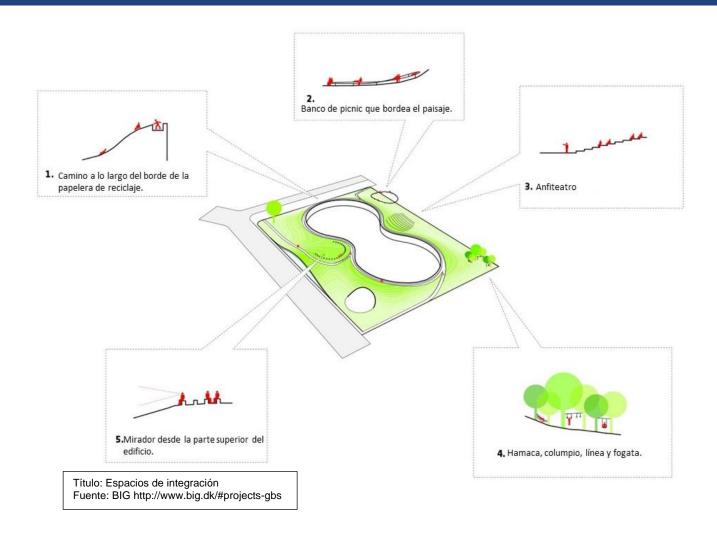
Cuenta con personal para ayudar a identificar los materiales y artículos que pueden reciclarse. Los artículos seleccionados se clasifican, pesan y almacenan para que puedan ser reutilizados en los talleres del centro, lo demás es llevado a los incineradores del Centro de recursos de Amager. (Sydhavn Genbrugscenter, 2018)

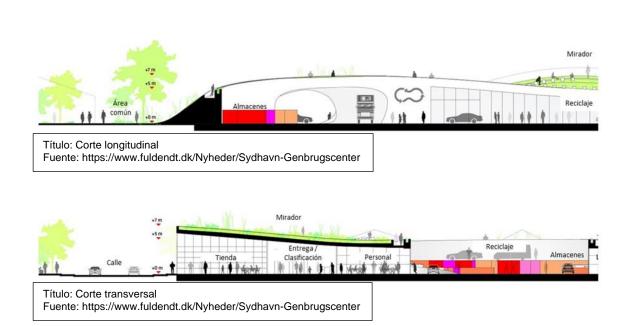


b. Casa múltiple

En la casa múltiple, cuentan con almacenamiento de material, laboratorio de pruebas, taller y otras instalaciones para reciclaje directo. Hay diferentes tipos de talleres y eventos para niños y adultos, así como paneles de debate, presentaciones y proyecciones de películas relacionadas con el reciclaje y la sostenibilidad, hay matrícula para las clases escolares, así como un servicio de visitas. Además, las empresas, las personas y las organizaciones pueden comprar grandes cantidades de materiales reciclados a granel. (Sydhavn Genbrugscenter, 2018)




c. Área de integración


Uno de los aspectos importantes del proyecto era la interacción del centro de reciclaje con los ciudadanos, para ello se instalaron diferentes actividades de integración como el anfiteatro, área de picnic, mirador, entre otros. (Sydhavn Genbrugscenter, 2018)

2. Centro de Recursos Amager (ARC)

2.1. Ubicación

El proyecto arquitectónico está ubicado en el área industrial de Copenhague, Dinamarca, cuenta con un área de 16 000m2. (ARC, 2018)

2.2. Datos generales

La planta de conversión de residuos en energía Amager Resource Center, tiene como principal objetivo convertir a la ciudad Copenhague en Carbono Neutro. recolectando 000 toneladas 400 desechos cada año, las cuales pasan por un proceso de incineración para generar energía calefacción. eléctrica proporcionando calefacción a 150 000 hogares y electricidad baja en carbono para 550 000 personas. (Søndergaard, 2019)

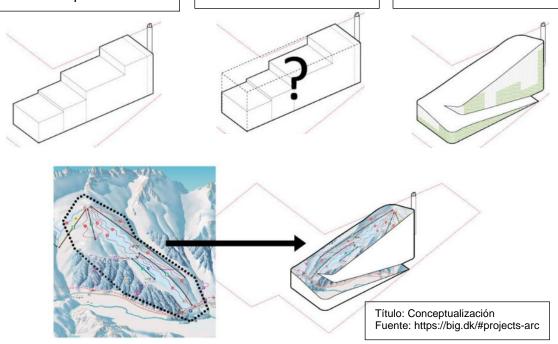
El centro se alimenta de energía renovable

como el viento y el sol, para poner en marcha el funcionamiento de las máquinas y apoyar con iluminación a las áreas, las cuales se iluminan principalmente por las grandes ventanas diseñadas estratégicamente para minimizar el uso de luz artificial. A pesar de los grandes esfuerzos de minimizar la emisión de CO2 fósil, Amager genera 160 000 toneladas de CO2 fósil cuando produce electricidad y calefacción, es por ello que están estudiando la posibilidad de capturar CO2 para posteriormente reciclarlo mediante el principio de capturar el CO2 rociando el humo antes de que salga de la chimenea, con un líquido que se une al CO2 de esta manera el humo saldría sin CO2. (ARC, 2018)

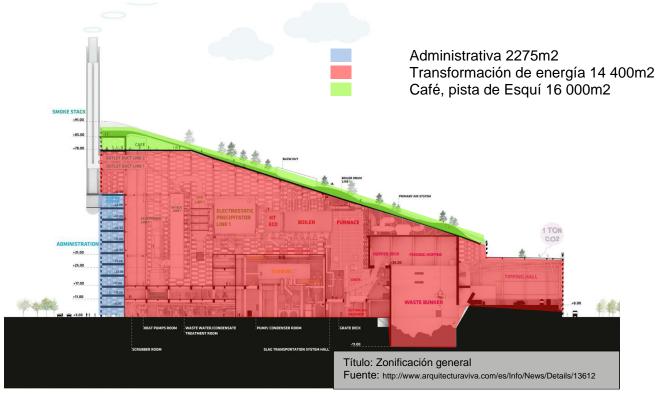
La propuesta es que la planta de conversión de residuos de energía sea económica, ambiental y socialmente rentable. En lugar de considerar el centro como una infraestructura aislada, se busca integrarla con la ciudad por ello consideraron varios aspectos como la participación de los ciudadanos para recolectar y separar la basura de manera entretenida en diferentes puntos de la ciudad, brindar calefacción y electricidad a bajo costo, generar conciencia mediante los anillos de humo que bota el centro cada vez que se libera 1 tonelada de CO2, además de proporcionar una pista de Ski sobre el techo de Amager. (Hermansen, 2010)

2.3. Vistas

2.4. Conceptualización


Los volúmenes internos de la nueva planta de residuos para energía han sido determinados por criterios técnicos y de ingeniería. Debido al gran tamaño y los requisitos para un posicionamiento preciso, la estructura primaria del edificio debe integrarse con la maquinaria. Por ello consideraron que la tarea de diseñar una fachada es una oportunidad para el contexto local.

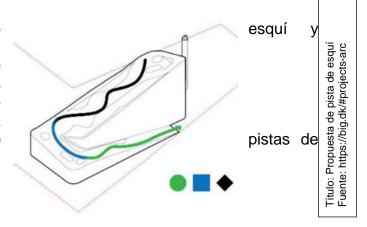
Los ladrillos en la fachada funcionan como jardineras, creando una fachada verde y convirtiendo el edificio en una montaña verde desde lejos, con una cima de montaña blanca que funcionará como una pista de esquí artificial para los ciudadanos de Copenhague, donde será posible esquiar todo el año.



La estructura primaria está determinada por criterios técnicos para integrarse a la perfección con la maguinaria. Diseñar la fachada se tomó como una oportunidad para el contexto local. Los ladrillos en la fachada funcionan como jardineras y el techo una pista de esquí artificial.

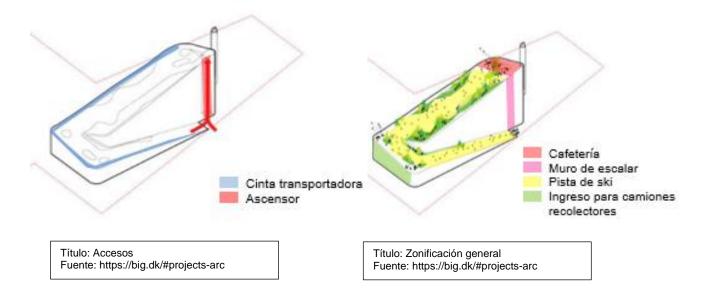
2.5. Zonificación general

El centro de reciclaje cuenta con una gran Planta de Reciclaje, Zonas administrativas y Zonas de entretenimiento.



a. Planta de Reciclaje

Más del 80% del área total es ocupado por todo el proceso de reciclaje y conversion de la basura, la que primero pasa por la zona de descarga, luego es seleccionada para ser llevada por una garra a la incineradora, donde el calor generado hierve el agua que se encuentra en las calderas, el vapor hace funcionar las turbinas y a través de un generador producen electricidad, calefacción y agua caliente. En la fachada mas alta de Amager ubican la zona administrativa y centro de visita. (ARC, 2019)

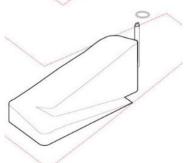

b. Zona de entretenimiento

Sobre el techo se implemento la pista de una cafetería en la cima, la geometría del roofscape admite tres pendientes de diferentes gradientes, esto acomodará a los esquiadores con una amplia gama de experiencia, desde principiantes hasta profesionales. Habrá un total de 500 m de ski y un parque.

El acceso a las pistas de esquí es a través de un ascensor el cual tiene una pared de vidrio que permite ver el funcionamiento interno de la planta. También hay 2 cintas transportadoras en el borde de la montaña.

El techo funciona como una montaña con áreas de bosque verde, sendero para caminatas y paredes para escalar. En la cima de la ladera habrá una meseta de observación y una pequeña cafetería.

2.6. Aspectos bioclimáticos


a. Envolvente

El edificio está envuelto suavemente con una fachada continúa hecha de ladrillos de aluminio apilados. las aberturas entre los ladrillos están dejando caer cascadas de luz natural en el pasillo de proceso profundo y el espacio de administración.

b. Concientización y captura de CO2

Si bien la energía sostenible se ha vuelto cada vez más importante en los medios y la política, la comprensión del tema en sí sigue siendo muy abstracta. Por ello la propuesta busca concientizar a los ciudadanos con la chimenea que le permitirá soplar anillos de humo cada vez que se libere 1 tonelada de CO2 fósil. Esto tendrá función comunicativa como un recordatorio del impacto del consumo. Además, se plantea utilizar un sistema de captura de CO2 agregando un líquido al humo antes de ser expulsado.

Título: Aspectos bioclimáticos Fuente: https://big.dk/#projects-arc

3. UTE Los Hornillos

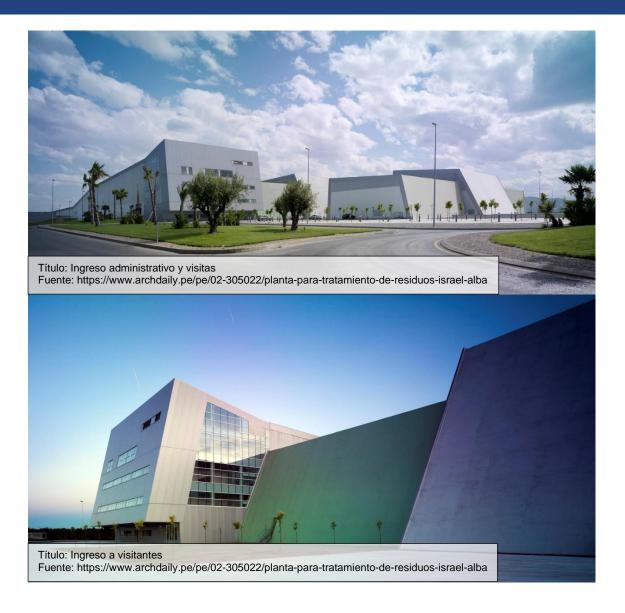
3.1. Ubicación

El Complejo de tratamiento y valorización de desechos urbanos ubicado en Quart de Poblet Valencia, España. Fue construido en el 2012 y cuenta con un área de 74 000 m2. (Cyes, s.f.)

3.2. Datos Generales

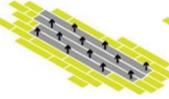
UTE Los Hornillos tienen la capacidad de tratar 400.000 toneladas/año. Tiene 4 líneas de reciclaje con selección automática, 74.000 m2 para naves cerradas, 3 biofiltros para depuración de olores. Además separan los elementos reciclables que contiene los desechos y genera compost con lo restante. (F. Turia, s.f.)

Los vehículos pasan por 4 básculas a la entrada y salida de la planta, después los residuos pasan por un pretratamiento, donde se clasifican todos los residuos La primera línea de reciclaje pasa por triaje primario (film, cartón, vidrio, entre otro) el flujo restante pasa por un tromel de cribado. La segunda línea pasa por un separador magnético, balístico y óptico donde se recuperan materiales férreos, plástico según composición y brick. Ambas líneas pasan ya clasificadas por un proceso de prensado y embalado. (Cyes, s.f.)

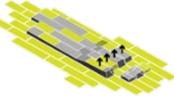

La tercera línea consiste en la clasificación de la fracción restante de la primera línea y orgánica selectiva (Residuos previamente clasificados en el sistema de estaciones de la ciudad) luego pasan por un proceso de tratamiento mediante túneles de compostaje realizándose la fermentación aeróbica de la materia orgánica. Los residuos restantes pasan a la línea cuatro de rechazo directo donde dos prensas embalan los rechazos producidos para ser enviados al centro de eliminación final. (Cyes, s.f.)

3.3. Vistas

3.4. Conceptualización


Se estableció un patrón inspirado en los campos de cultivo ubicados en los alrededores del proyecto.

Se fragmentaron 4 bandas que combinan con el entorno inmediato en escala, color y textura.


Se levantó el volumen para organizar los espacios exteriores y construir un fragmento de ciudad con su pequeña plaza de acceso.

El volumen se diseña de acuerdo a sus necesidades (programa, uso, luz natural)

Título: Conceptualización

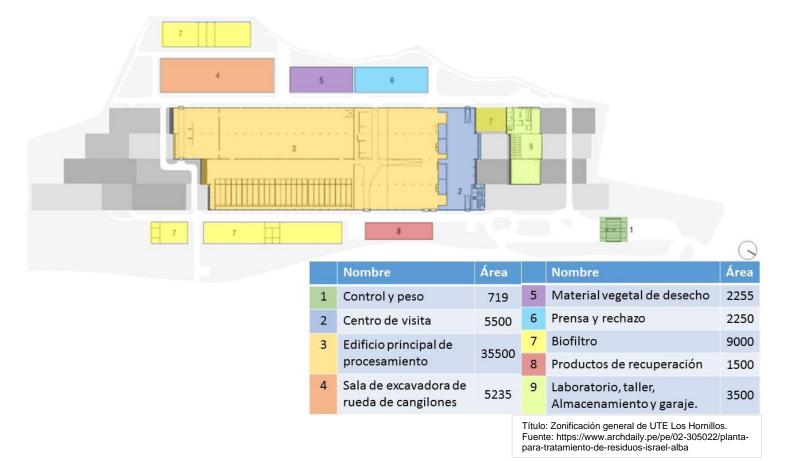
Fuente: https://www.archdaily.pe/pe/02-305022/planta-para-tratamiento-de-residuos-israel-alba

3.5. Zonificación General

El Complejo de tratamiento y valorización de residuos urbanos cuenta con tres zonas importantes la planta de tratamiento, áreas administrativas y centro de visita.

a. Planta de tratamiento

La plata de tratamiento cuenta con un área principal de procesamiento donde se clasifican los residuos en material vegetal que luego pasa al biofiltro, productos de recuperación que son aprovechados en los talleres, Sala de excavadora y/o por la prensa donde los residuos que no se pueden utilizar son embalados y llevados a disposición final. (Cyes TV, 2013)


b. Áreas administrativas

Para ingresar a la planta de tratamiento, los camiones primero pasan por el área de control y peso de esta manera se mantiene una organización y conocimiento de lo que ingresa y sale de la planta.

También cuentan con un moderno laboratorio donde se realiza el control analítico durante todo el proceso, además de eso cuentan con talleres variados enfocados en el reciclaje a servicio de la comunidad. Entre otras cosas también cuentan con almacenes y garaje. (Cyes, s.f.)

c. Centro de visitas

Cuentan con aulas didácticas con en el fin de sensibilizar y educar a los ciudadanos sobre los residuos, además de áreas de exhibición donde muestran los procesos que se realizan en la planta. (Cyes TV, 2013)

4. Planta de conversión de residuos en energía de Bolzano (Termovalorizzatore di Bolzano)

4.1. Ubicación

La moderna planta de Bolzano, ubicada a las puertas del centro histórico de la ciudad de Bolzano, Italia. Atiende a un grupo de 400,000 usuarios, llegando a tratar hasta 130 000 t / a de residuos sólidos municipales y cuenta con un área de 25,000 m2 (Ladurner, 2015)

4.2. Datos generales

La planta de conversión de residuos en energía de Bolzano captura el calor producido por la combustión de los residuos, convirtiéndolos en vapor y de este modo produce energía térmica y eléctrica.

La mayor parte de la electricidad producida se vende a la red nacional, mientras que solo una cantidad mínima se utiliza para los servicios de la planta. La porción de vapor que no se convierte en electricidad suministra energía térmica a la red de

Título: Vista Nor este Fuente: file:///C:/Users/pc/Downloads/ brochuretvaeng%20(2).pdf

calefacción de distrito de la ciudad de Bolzano: hasta la fecha (2016) se conectan 3.500 hogares y 100 establecimientos comerciales, pero la futura expansión de la red permitirá calentar otros 10.000 hogares y numerosos edificios públicos, incluido el hospital Bolzano.

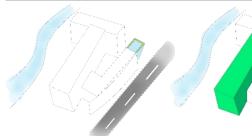
Se pudo eliminar más de un tercio de las calderas de condominios de Bolzano, lo que lleva a una reducción de más del 20% en las emisiones atmosféricas en la cuenca de Bolzano. (Eco Center, 2017)

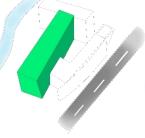
4.3. Vistas

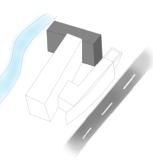
Título: Vista Sur-este

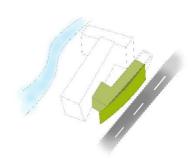
Fuente: https://www.eco-center.it/it/attivita servizi/ambiente/impianti/impianto-di-termovalorizzazione-897.html

4.4. Conceptualización

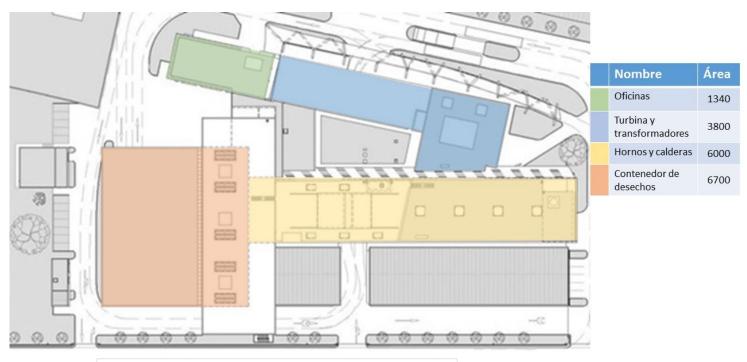

CL & aa tuvo el objetivo de disminuir el impacto visual en el lugar, con el diseño de un equipamiento, donde las líneas y colores recordaran el horizonte, en armonía con lo artificial y natural.


Está conformada por dos volúmenes que están orientados hacia la carretera y el río, los cuales tienen diferentes alturas. (Vega, 2014)

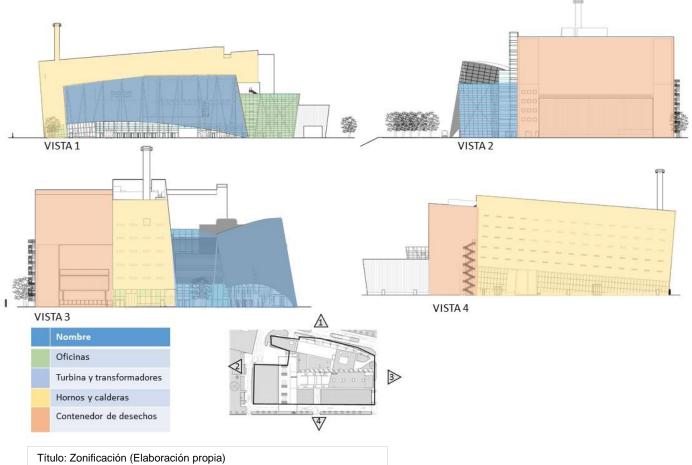

1er volumen: Una piel de aluminio verdoso, que cubre la maquinaria y actúa como barrera contra el ruido. Un volumen de cristal inclinado, en el cual existe un invernadero pequeño.


2do volumen: Alineado a lo largo de la dirección del río Isarco, con revestimiento verde compuesto por diferentes vanos.

Un gran contenedor de residuos y un vestíbulo recubierto con policarbonato verde.


Título: Conceptualización

Fuente: https://www.archdaily.pe/pe/02-362795/planta-de-tratamiento-de-desechos-a-energia-en-bolzano-cl-and-aa-architects



Zonificación general 4.5.

Título: Zonificación y áreas (Elaboración propia) Fuente: https://www.archdaily.pe/pe/02-362795/planta-de-tratamientode-desechos-a-energia-en-bolzano-cl-and-aa-architects

Fuente: https://www.archdaily.pe/pe/02-362795/planta-de-tratamiento-

de-desechos-a-energia-en-bolzano-cl-and-aa-architects

5. <u>Síntesis de antecedentes</u>5.1. *Resumen de áreas*

Área Centro	Capacidad t/a	Almacén m2	Reciclaje m2	Oficinas m2	Área publica m2
Sydhavns Recycling Center	200 000 ton	813	400	835	1398
Centro de Recursos Amager (ARC)	443 000 ton	5 300	9100	2 275	16 000
UTE Los Hornillos	400 000 ton	869	54240	3500	
Termovalorizzatore di Bolzano	130 000 ton	6700	9800	1340	

Matriz de estrategias 5.2.

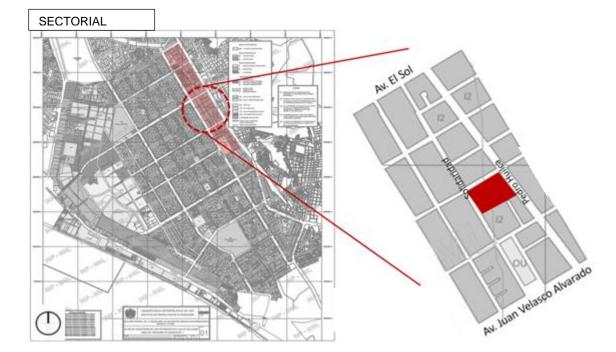
Matriz de estrategias aplicadas en las referencias arquitectónica.

Estrategia Centro	Área (m2)	Tipología	Residuos t/a (m3)	Contexto	Bioclimática	Funcionalidad
Sydhavns Recycling Center	15 000	Clasificación de residuos para reciclaje o disposición final	200 000	Actividades que integren a los ciudadanos con el equipamiento	No se encontró información	-Almacén -Aulas -Laboratorio -Oficinas -Esp. Públicos
Centro de Recursos Amager (ARC)	16 000	Incineración de residuos para crear energía y calefacción	443 000	Actividades que integren a los ciudadanos con el equipamiento	Amplios vanos para ventilación y luz natural	-Almacén -Procesamiento -Aulas -Laboratorio -Oficina -Esp. Públicos
UTE Los Hornillos	74 000	Planta de tratamiento de todo tipo de residuos	400 000	Imagen arquitectónica equilibrada con el entorno	No se encontró información	-Almacén -Procesamiento -Laboratorio -Centro visita -Oficina
Termovalorizzatore di Bolzano	25 000	Incineración de residuos para crear energía y calefacción	130 000	Líneas arquitectónica acordes al contexto	Malla contra ruido, vanos alrededor de fachada	-Almacén -Procesamiento -Oficina

8. Conclusiones y recomendaciones

- 1. Los programas varían de acuerdo a la cantidad de residuos tratados y los procesos que se realizan en ella, lo cual complica establecer un modelo general que se pueda aplicar y funcionar en otros lugares.
- Los centros alejados de las zonas urbanas no contemplan mayor compromiso con el ámbito social, en el sentido de no brindar espacios que incentiven la participación de las personas, a pesar de ello cumplen adecuadamente su función principal que es la de reciclar.
- 3. Los centros más accesibles a los ciudadanos en los que se segrega los residuos para ser tratados o en los que se busca la participación activa de las personas, contemplan espacios y actividades para los ciudadanos, cada centro lo hace en diferente medida. Se aprecia un mayor compromiso de las personas en el reciclaje, cuando tienen un acceso más directo y conocimiento sobre el centro.
- 4. La mayoría de los centros contemplan la mejora continua e investigación de nuevas tecnologías que favorezcan su producción y minimicen cada vez más la contaminación.

X. DIAGNÓSTICO


1. Ubicación

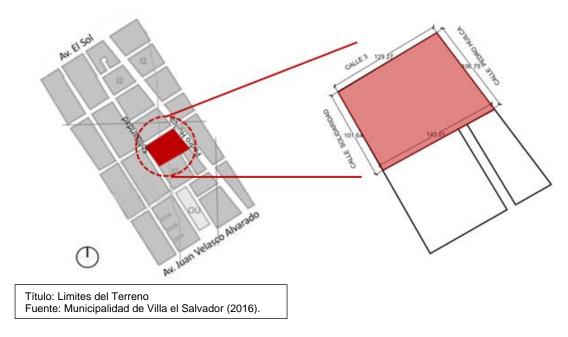
El terreno donde se ubica el proyecto está ubicado en Perú, en el departamento de Lima, distrito de Villa el Salvador, Zona Industrial, Lote I1 Parque industrial de muebles.

Título: Departamento de Lima, Perú. Fuente: Guillermo Romero. (2009). Media Viewer. Perú. DISTRITAL

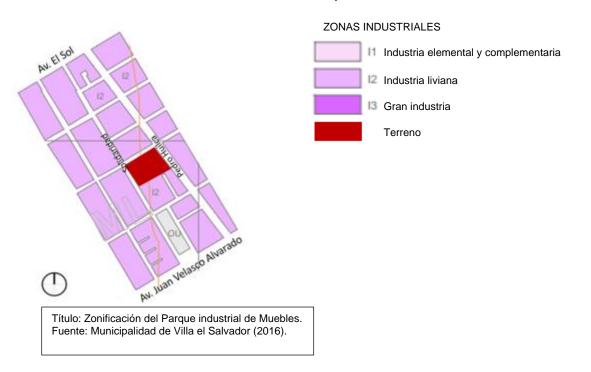
Título: Distrito de Villa el Salvador, departamento de Lima. Fuente: Edgardo Reyes. (2005). Media Viewer.

Título: Ubicación del Terreno

Fuente: Municipalidad de Villa el Salvador (2016).



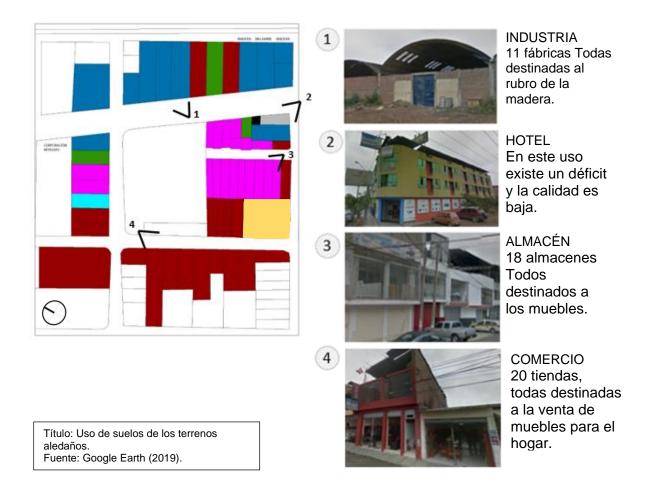
2. Límites del Terreno

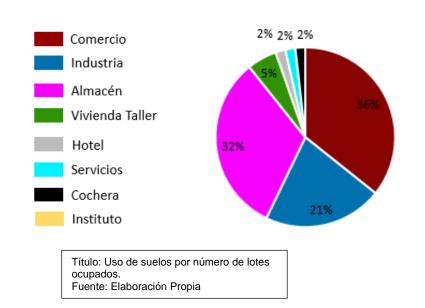

Se eligió estratégicamente un terreno libre ubicado en el centro del eje vertical del Parque industrial de muebles de Villa el Salvador, con fácil acceso a transporte, cerca de comercios y talleres.

El terreno se ubica en el bloque i entre las avenidas principales El Sol y Juan Velasco Alvarado, el terreno cuenta con tres frentes por el lateral izquierdo limita con la calle Solidaridad con un perímetro de 101.64 m, por el lado frontal limita con la Calle 3 con un perímetro de 129.27m, por el lateral derecho limita con la calle Pedro Huilca con un perímetro de 106.75m y por el lado posterior colinda con propiedad de terceros con un perímetro de 143.01m2.

3. Zonificación

El terreno se ubica en la zona 12 correspondiente al uso de Industria liviana.





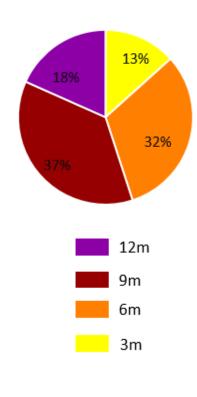
4. Usos de suelo

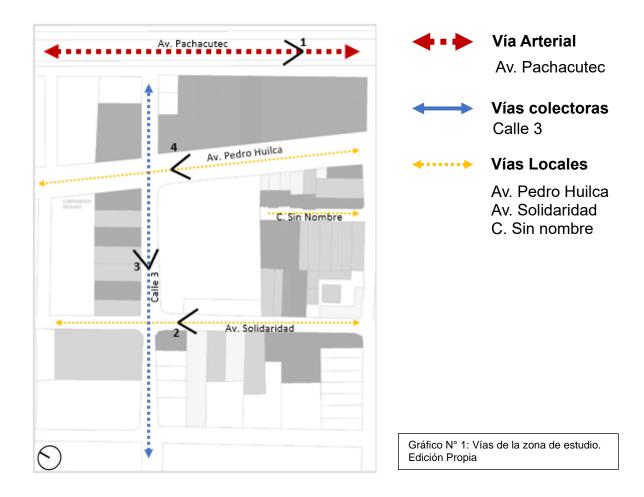
Para identificar los usos, se estableció un radio de 150m en el terreno elegido.

El uso comercial tiene mayor presencia en la zona estudiada con 20 lotes ocupados, los almacenes ocupan el 2do lugar con 18 almacenes, las fabricas están en 3er lugar con 11 fábricas.

5. Características de las edificaciones

La zona de estudio se caracteriza en su mayoría, por tener edificaciones de 9 m y 6m de altura, también cuenta con edificaciones de 12m y 3m de altura, pero en menor porcentaje. Con respecto a los materiales utilizados, se observa que en su totalidad las edificaciones son de ladrillo.




Gráfico Nº 1: Material y estado de las ediciones en los terrenos aledaños. Fuente: Elaboración Propia

6. <u>Vialidad y transporte</u>

6.1. <u>VÍAS</u>

a. Vía Arterial

Como vía arterial esta la Av. Pachacutec, por donde transitan transportes pesados (camiones de carga), transporte privado y transporte público (buses, combis, mototaxi y taxis). Se observa que las vías están en buen estado a diferencia de las jardineras que están sin mantenimiento.

Av. Pachacútec

(75m incluido jardineras) Cuenta con 3 vías (6m) de 2 carriles cada una.

b. Vía colectora

Como vía colectora esta la Calle3, por donde transitan transportes pesados (camiones de carga), transporte privado y transporte público (taxis). Se observa que la vía está en mal estado y las jardineras no han sido tratadas.

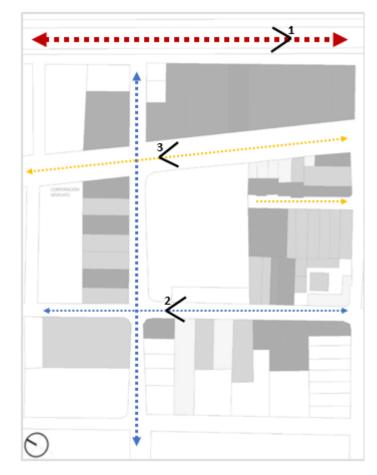
Calle 3 (6m de ancho) Vía de doble sentido, cuenta con 2 carriles.

c. Vía locales

Como vía locales están la Av. Pedro Huilca, Av. Solidaridad y C. Sin nombre, por donde transitan transportes pesados (camiones de carga), transporte privado y transporte público (taxis y mototaxi).

Av. Solidaridad (6m de ancho) Cuenta con 2 carriles, doble sentido.

Av. Pedro Huilca (18m de ancho) Vía con gran potencial que no está siendo aprovechada.



6.2. Tránsito Vehicular

Se observó que la av. Pedro Huilca y la calle sin nombre son las vías con menor tránsito vehicular.

(Por las mañanas y tardes) Debido a que es una vía rápida para los conductores.

(Por las mañanas y tardes) Debido a las actividades de comercio de muebles, estas vías son tomadas por camiones de carga y descarga.

◆····· BAJO

(Por las mañanas y tardes)
Vías de poco uso debido a la
poca presencia de
actividades comerciales.

6.3. Flujo Peatonal

INTENSO

(Por las mañanas y tardes) Sector de vía con un flujo peatonal alto, debido a las actividades de comercio.

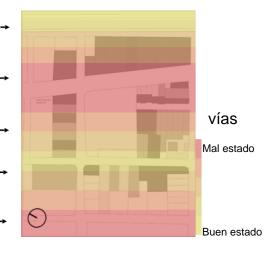
MEDIO

(Por las mañanas y tardes) Sector de vía con flujo peatonal medio, debido al poco comercio en esa zona.

BAJO •

(Por las mañanas y tardes) Sector de vía con un flujo peatonal bajo, en estas zonas no hay comercio y las vías no están asfaltadas.

7. <u>Síntesis del contexto</u>


La zona de estudio tiene usos no compatibles con la zonificación y el principal propósito del Parque Industrial que en sus inicios buscó implantar fábricas, pero con el tiempo naturalmente se fueron desarrollando puestos de venta, principalmente en la Av. Solidaridad; sin embargo, el uso comercial, almacenes y fábricas comparten casi el mismo porcentaie de uso.

En cuanto a las características de las edificaciones se observa una homogeneidad en cuanto a la altura y material, aunque hay mayor interés en mantener las vías y las fachadas

en la zona comercial que en la zona industrial donde las vías no están asfaltadas y las

fachadas están sin mantenimiento.

En cuanto a las vías, las vías con mayor jerarquía están en mejor estado y hay un mayor flujo peatonal a diferencia de las de menor jerarquía que en su mayoría están sin asfaltar y el flujo peatonal es prácticamente nulo, además de la falta de veredas adecuadas y áreas verdes en la zona.

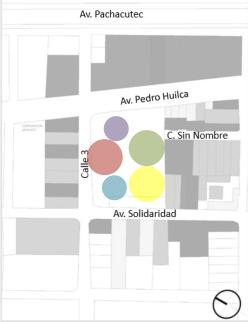
7.1. Control y propuesta

En el diagnóstico del contexto se evidencia la separación drástica entre la industria y el comercio ya establecido en el lugar, donde la avenida comercial presenta mayores cuidados en el espacio público a diferencia de las avenidas y calles cercanas a industrias y talleres.

Si bien es cierto la zona industrial no contemplaba en un principio el comercio, lo cual se podría ver como desventaja, en el proyecto se plantea aprovechar el mayor flujo de personas debido al comercio para conectar y concientizar a las personas sobre los procesos de fabricación de muebles y sus impactos, mediante el programa general establecido en la articulación de la investigación y proyecto arquitectónico en el cual se plantearon propuestas espaciales para cada dimensión.

MATRIZ DE LA PROPUESTA							
DIMENSIONES	ESPACIOS	MEDIOS	ACCESIBILIDAD				
Metabolismo	Espacios para capacitaciones	Salas de uso múltiple Aulas y talleres Auditorio	Pública controlada				
industrial y crecimiento		Administrativo	Semipública				
económico	Planta de transformación de	Planta de transformación	Limitada				
	residuos de madera	Oficinas	Limitada				
	Aplicación de energía renovable	Paneles solares	Solo operarios				
	Concientización en el espacio público sobre la madera certificada	Paneles fotográficos y de video					
Medidas de		Pinturas graficas en el piso					
ecoeficiencia y contaminación ambiental					l forma de huella		
		Eco modulo	Pública				
		Paseo de luces de conmemoración					
		Tótem FSC					
		Torres informativas didácticas					
	residues no	Contenedor de 13m3	Semipública				
Gestión de residuos y calidad de vida		Contenedor de 1.44m3	Pública				
	domiciliarios	Contenedores variados	i ubilda				

ACCESIBILIDAD	
Solo operarios	El ingreso es netamente permitido a los operarios, para el mantenimiento o trabajos requeridos.
Limitada	El ingreso es permitido solo a los trabajadores, el público puede ingresar previa coordinación y supervisión.
Pública controlada	El público puede ingresar previa inscripción.
Semipública	Ubicados en el espacio público, pero controlados con elementos físicos.
Pública	Completa y libre accesibilidad al público.



a. Aplicación en el contexto

Para definir la ubicación de cada medio en el contexto se agruparon de acuerdo a compatibilidad de características y accesibilidad necesaria.

OBSERVACIÓN	MEDIO
Sonvicios comunos	Sala de usos múltiples
Servicios comunes	Aulas y talleres
	Administrativo para
Oficinas	capacitaciones
Officinas	Oficinas de la planta de
	transformación
Planta de transformación	Planta de transformación
	Paneles fotográficos
	Pintura gráficas en piso
	Muro informativo
Espacia pública	Eco modulo
Espacio público	Paseo de luces de
	conmemoración
	Tótem FSC
	Torres informativas
	Contenedor de 13m3
Zona Reciclo	Contenedor de 1.44m3
	Contenedores variados

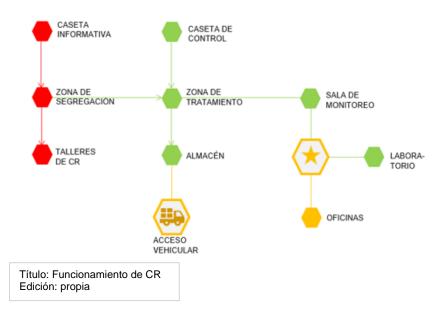
- -Servicios comunes: Los servicios comunes se ubicaron cerca del mayor flujo de personas para permitir la visibilidad a nuevos estudiantes y cerca de la avenida principal (Av. Pachacutec) para facilitar el acceso vial.
- -Oficinas: Las oficinas se ubicaron cerca de la avenida comercial de muebles (av. Solidaridad) con la finalidad de facilitar la integración con los comerciantes para futuras negociaciones, acuerdos o convenios.
- -Planta de transformación: La planta de tratamientos se ubicó lejos del mayor flujo de personas y de la avenida comercial para evitar conflictos en la descarga de residuos. Se debe considerar acceso vial hasta la planta de transformación.
- -Espacio público: Los medios del espacio público se ubicaron cerca al mayor flujo de personas, para permitir su fácil visibilidad y accesibilidad.
- -Zona de reciclo: La zona reciclo se ubicó cerca de la planta de tratamiento y de la avenida principal para facilitar el acceso vial, la zona de reciclo debe tener conexión con el espacio público con el fin de incentivar la participación de los ciudadanos en el reciclaje.

XI. PROPUESTA DEL PROYECTO ARQUITECTÓNICO CENTRO DE RECICLAJE

1. Programación arquitectónica

El programa arquitectónico busca concientizar a los ciudadanos sobre el reciclaje y procesos de fabricación mediante vitrinas de exposición de procesos y zonas de segregación de residuos que invite la participación activa de los ciudadanos. Además de proporcionar ambientes cerrados aptos para la capacitación de trabajadores de los talleres, espacios de investigación para la búsqueda de una mejora continua en los procesos de fabricación y nuevas tecnologías, zona de transformación de residuos de madera y servicios compartidos de máquinas de alta tecnología que maximicen el uso de recurso.

El programa se divide en tres grandes categorías:


PROGRAMA	CANT. (u)	INDICE	AFORO
Sala de usos múltiples	1	1.0m2	30
Cubículos	3	4m2	6
Aulas	2	1.5m2	30
Talleres	2	5.0m2	20
Auditorio	1	x asiento	300
Ss.hh Hombres	2 lavamanos, 2 urinarios y 2 inodoros		12
Ss.hh Mujeres	2 lavamanos y 2 inodoros		8
Administrativo de capacitaciones	1	10.0m2	10
Ss.hh Hombres	1 lavamanos, 1 urinarios y 1 inodoros	10 trabajadores	3
Ss.hh Mujeres	1 lavamanos y 1 inodoros	10 trabajadores	2
Oficina	1	10.0m2	4
Ss.hh Hombres			
Ss.hh Mujeres			
Laboratorio	1	10.0m2	23
Estacionamiento		1/cada 6 trabajadores	16
Duchas	2 duchas		2
Vestuarios	1		
Cocina	1	9.5m2	4
Área de mesas	1	1.5m2	1
Caseta de control	1		2
Estacionamiento para camiones	2		
Almacén de residuos	1		3
Sistema de transformación	1	Según proceso	6
Depósito móvil	1		2
Coloración manual	1		2
Empaquetamiento	1		2
Almacenamiento	1		2
Sala de control	1	10.0m2	3
Ss.hh. Hombres	2 lavamanos, 2 urinarios y 2 inodoros		6
Ss.hh. Mujeres	2 lavamanos y 2 inodoros		4

1.1. Diagramas

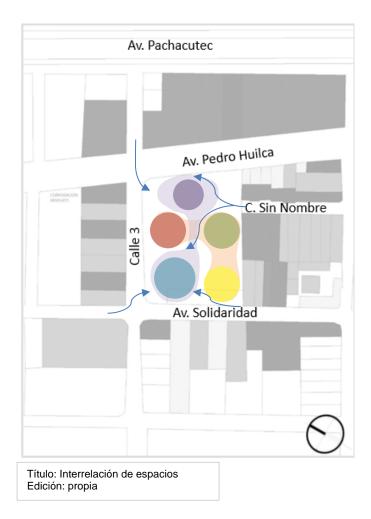
a. Funcionamiento del Centro de Reciclaje

b. Flujo de reciclaje de madera

Título: Flujo del reciclaje de la madera Edición: propia

2. Concepto del proyecto

Según el diagnóstico del contexto, se evidencia una drástica separación entre la zona comercial e industria, donde la industria está cerrada y no se integra con el espacio público logrando un descuido espacial que no favorece la interrelación.

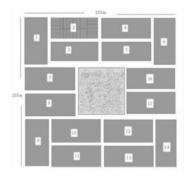

Es por ello que se plantea aprovechar el mayor flujo de personas en la zona comercial para impulsar la zona industrial mediante la permeabilidad de los ambientes y fluidez en los accesos.

2.1. Interrelación de los espacios

Partiendo de la teoría de la ecología industrial, basada en la interrelación de la economía, medio ambiente y sociedad, se plantea interrelacionar los espacios propuestos con el fin de obtener una accesibilidad fluida entre los servicios comunes, las oficinas y la planta de transformación, dichos espacios deben estar envueltos en el espacio público que tiene como objetivo incentivar la participación activa de los ciudadanos en el reciclaje y conservación del medio ambiente.

Para lograr una fluidez en la accesibilidad se plantea dejar espacios libres con núcleos conectados con actividades que capten la atención de las personas y propicien su participación.

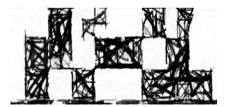
0	OBSERVACIÓN				
	Servicios comunes				
	Oficinas				
	Planta de				
	transformación				
	Espacio público				
	Zona Reciclo				



2.2. Permeabilidad y fluidez

Para lograr la interrelación de los espacios se plantea la permeabilidad y fluidez como concepto, aplicada a cada aspecto del proyecto arquitectónico.

Concepto	Objetivo	Estrategia
Permeabilidad	-Mostrar los procesos y el	-Uso de vitrinas
	funcionamiento interno	-Muros con celosías
	-Permite el ingreso de luz y	-Vanos amplios
	viento	-Perforación de la
		estructura
Fluidez	-Accesos interconectados	-Puentes
		- Circulación interna
		integrada
		-Conexión con cada
		ambiente


La estructura se perfora permitiendo el paso del peatón y de los elementos naturales como el sol y el viento. La distribución permite la visibilidad de los procesos de transformación, en cuanto al programa se busca la interrelación entre ellos y el entorno. La forma geométrica se basa en el diseño típico de los lotes y calles del distrito de Villa el Salvador.

Diseño típico de lotes y calles del distrito de Villa el Salvador.

Descomposición de las formas geométricas.

Perforaciones en fachadas.

3. Criterios de diseño

3.1. Criterios bioclimáticos

Según el mapa climático nacional (Senamhi, 2020) lima está ubicado en la costa con un clima semi cálido, desértico-árido-sub tropical.

CLIMA	CARACTERÍSTICAS	OBSERVACIÓN	CONTROL
Precipitación	Árido	Cielo nuboso y escasa o nula precipitación	No necesita control
Temperatura	Semi cálido	En otoño e invierno amanece nublado y al medio día se disipan permitiendo intenso brillo solar. La temperatura media anual de 18° a 19°C. Temperaturas extremas máximas y mínimas.	Radiación solar controlada
Humedad	Húmedo	La humedad media anual en Lima es de 83.5%	Ventilación controlada

Título: Características del clima

Fuente: https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru

3.2. Estrategias bioclimáticas

a. Radiación solar controlada

Debido a las temperaturas máximas y mínimas en verano e invierno respectivamente, el control de la radiación solar debe ser variable.

En invierno se debe aprovechar la incidencia del sol, captarla en el día y aprovecharla de manera inmediata.

Sistemas y recursos:

- Captación directa a través de vanos.
- Se debe tener en cuenta la orientación y la ubicación para el diseño del vano.
- El material translúcido debe ser un material con una transferencia térmica bastante alta.

(Rey, 2012)

Fuente: Wieser, Martín. Consideraciones bioclimáticas en el diseño arquitectónico: El caso peruano, editorial Pontificia Universidad Católica del Perú, 2012.

En verano la necesidad de controlar la radiación solar directa sobre las superficies

exteriores del equipamiento y más en el interior, es imprescindible.

Sistemas y recursos:

- Para controlar la incidencia solar se utilizarán aleros y celosías móviles.
- Creación de espacios de sombra.
- Doble cobertura para la protección de las superficies interiores.

(Rey, 2012)

Fuente: Wieser, Martín. Consideraciones bioclimáticas en el diseño arquitectónico: El caso peruano, editorial Pontificia Universidad Católica del Perú, 2012.

c. Ventilación controlada

En invierno es importante controlar que la presencia de un viento exterior, intervenga de manera drástica en el interior del equipamiento.

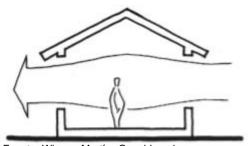
Sistemas y recursos:

- Retraimiento de los cristales e impermeabilidad de los sistemas.
- Adecuada orientación en concordancia a los vientos predominantes.
- Celosías como obstrucción de viento.

(Rey, 2012)

Fuente: Wieser, Martín. Consideraciones bioclimáticas en el diseño arquitectónico: El caso peruano, editorial Pontificia Universidad Católica del Perú, 2012.

En verano es importante aprovechar la presencia del viento, logrando que intervenga en las situaciones térmicas del interior del equipamiento. Siempre que la temperatura del interior y exterior sean las apropiadas, mediante el movimiento del aire (Rey, 2012).



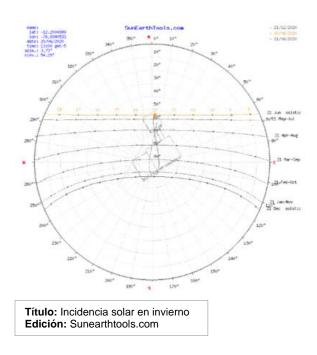
Sistemas y recursos:

- Los vanos estarán diseñados en correspondencia con la dirección y fuerza del viento. Para de esta manera aprovechar los cambios de presión que existen en el interior y exterior del equipamiento.
- En la parte superior del equipamiento se utilizarán captador de viento.

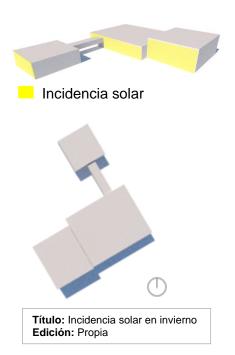
(Rey, 2012)

Fuente: Wieser, Martín. Consideraciones bioclimáticas en el diseño arquitectónico: El caso peruano, editorial Pontificia Universidad Católica del Perú, 2012.

3.3. Aplicación en el proyecto

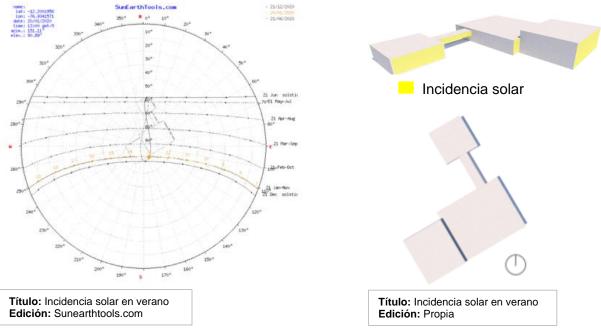

El eje central del proyecto está ubicado en la latitud: 12°12'02.0"S y longitud: 76°56'02.1"O

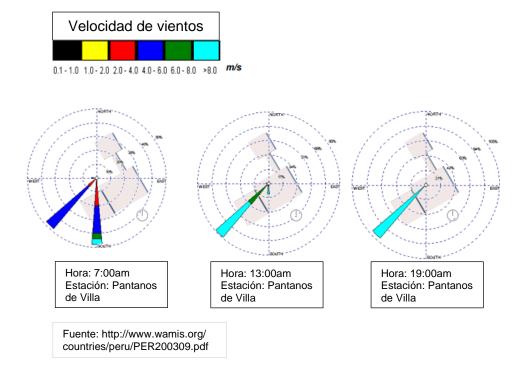
a. Incidencia solar en el terreno


INVIERNO

Junio 15°C (min/prom)

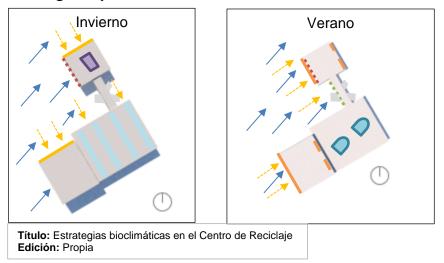
En invierno la incidencia solar más fuerte cae en la superficie de las fachadas del noreste en 60°, la cual se debe aprovechar para calentar los ambientes en el invierno.


VERANO Enero 27°C(max/prom)



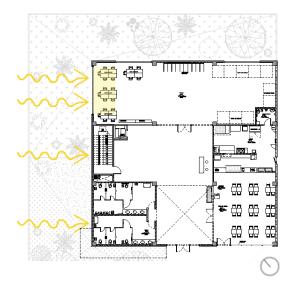
En verano la incidencia solar más fuerte cae en la superficie de las fachadas del sureste en 80°, la cual se debe controlar en el verano.

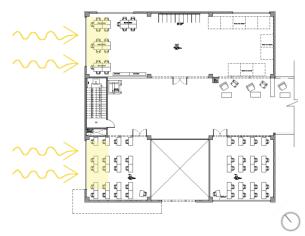
b. Movimiento de vientos en el terreno


Según la rosa de vientos de la estación de monitoreo más cercana a Villa el Salvador, se identifica que los vientos predominantes vienen del Sur-Oeste con velocidad promedia baja de 7.0m/s.

c. Estrategias aplicadas

Leyenda

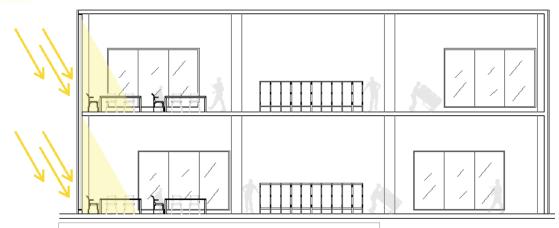



d. Captación solar

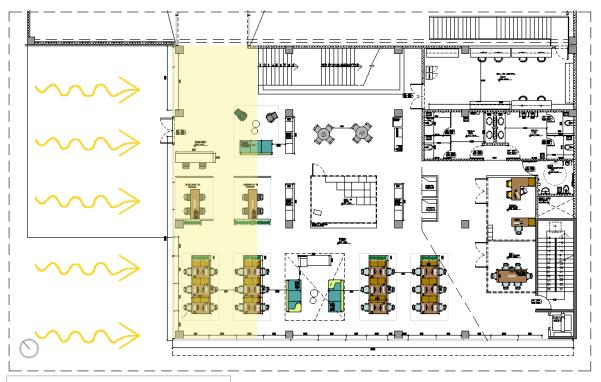
Iluminación natural

En invierno la incidencia solar más fuerte, entre la 1pm y 3pm, viene del Noroeste y cae a la superficie en 60°, Para aprovechar la incidencia solar en invierno se propone orientar los vanos al Noroeste, los vanos solo cuentan con paños de vidrio, no cuentan con ninguna celosía ni objeto que obstaculice el ingreso solar.

Teatina



Título: Plano, incidencia solar en nivel 1 salones y talleres


Edición: Propia

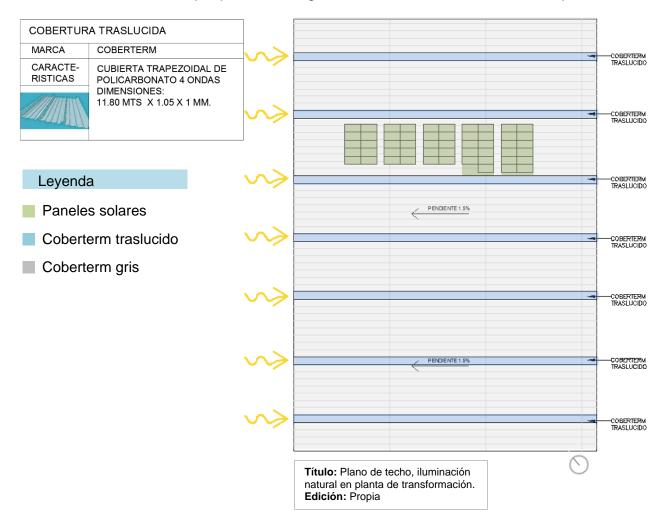
Título: Plano, incidencia solar en nivel 2 salones y talleres

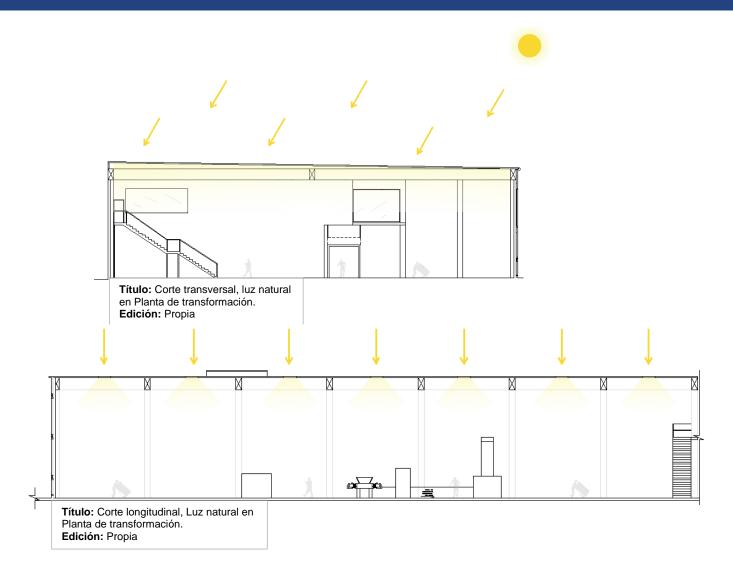
Edición: Propia

Título: Corte transversal, incidencia solar en salones y talleres **Edición:** Propia

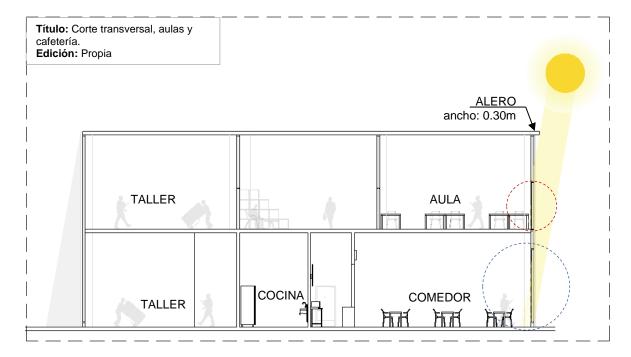
Título: Plano, incidencia solar en oficina

Edición: Propia

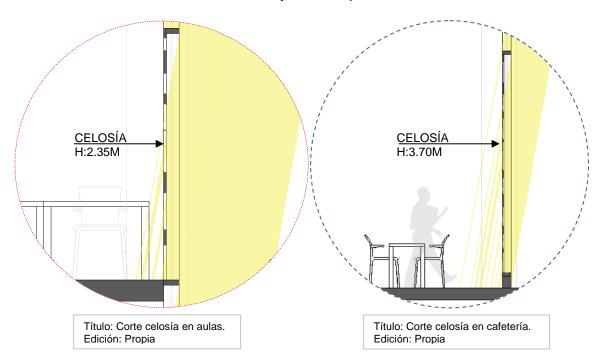


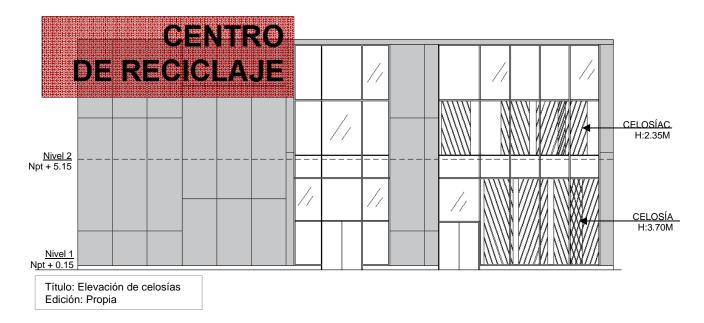

e. Secciones de cobertura traslucida en el techo

Por características de la planta de transformación, la cual requiere de una cobertura termoaislante y acústica en el perímetro, se propone utilizar secciones de cobertura traslucida en el techo que permita el ingreso de luz natural al interior de la planta.

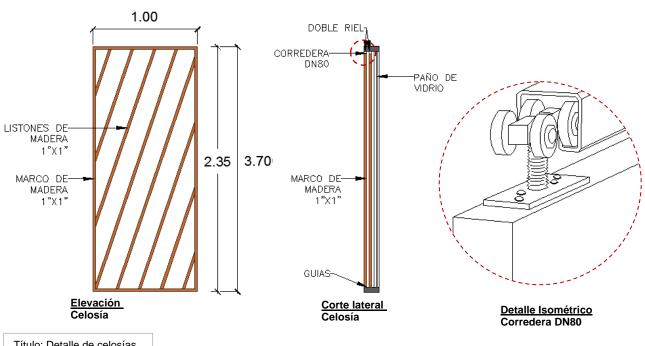

f. Celosías móviles

Las celosías móviles orientadas al sur-oeste, en verano tienen la función de mitigar la incidencia solar de acuerdo a las necesidades.

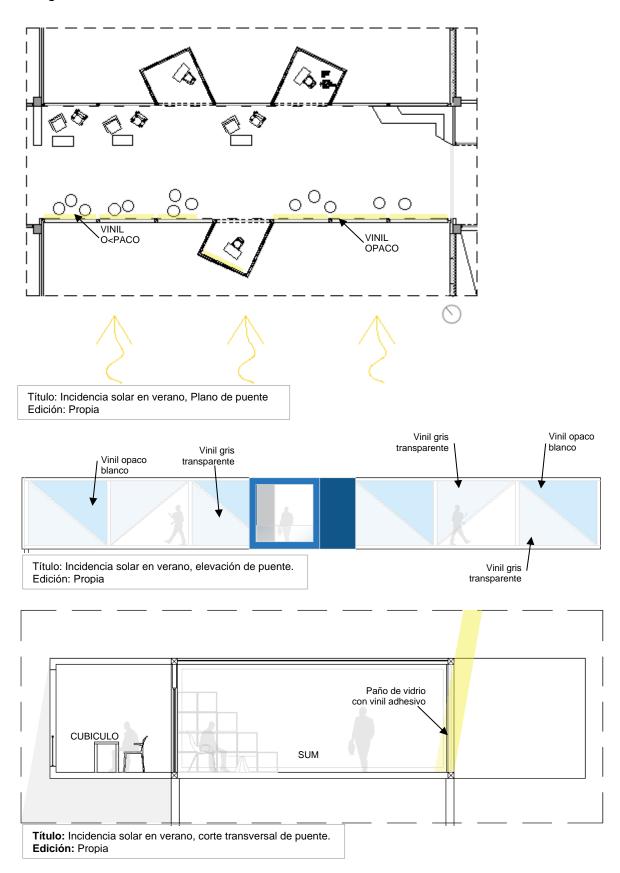

Para fines del proyecto se consideró la incidencia solar en verano, en el horario de 1:30 a 2:30, la cual cae a la superficie en un Angulo de 80°.



Las celosías se ubicaron en la parte interna e inferior de los niveles, para facilitar la accesibilidad de movilidad manual de las celosías, la incidencia solar en la parte superior se controló mediante aleros de 30cm y marcos profundos de 10cm.

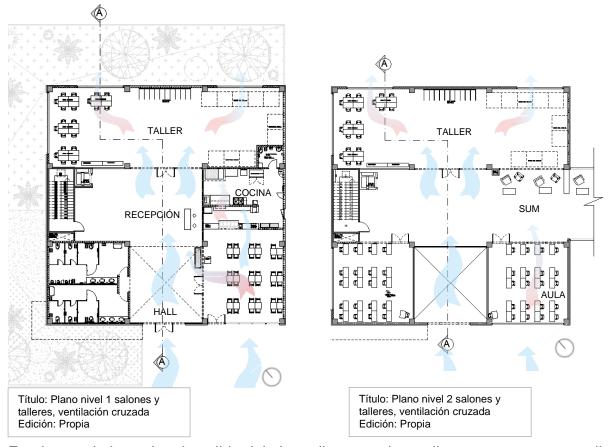


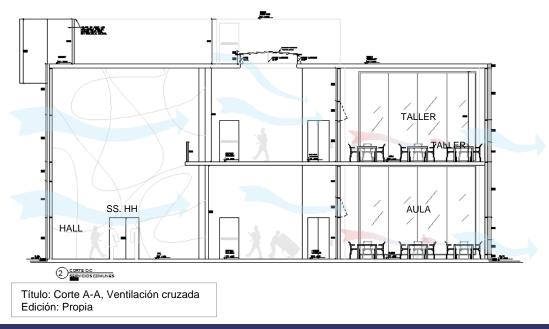
El diseño de la celosía está conformado por un marco de madera y diagonales de 1", las dimensiones son de 1.00 x 2.35m para las aulas y de 1.00 x 3.70m para comedor, las cuales están montadas sobre un sistema de doble riel con correderas DN80 en la parte superior y guías en la parte inferior.


Título: Detalle de celosías Edición: Propia

g. Vinil opaco

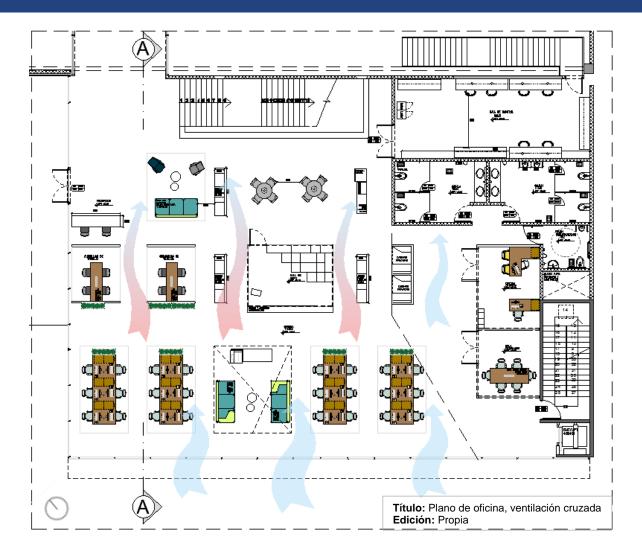
Se propone utilizar vinil opaco en el puente, donde se ubica la sala de usos múltiples, ya que es una zona menos rígida. El vinil opaco minimiza la incidencia solar y a su vez permite el ingreso de luz natural.

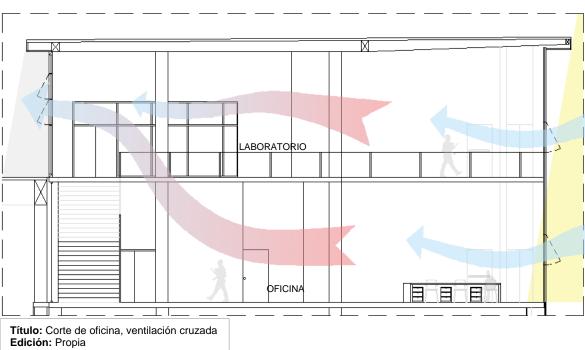


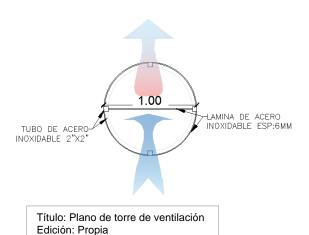

h. Ventilación cruzada y teatina

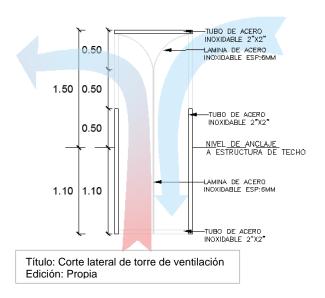
Se propone ubicar los vanos orientados al Sur-oeste para aprovechar los vientos predominantes en la ventilación y renovación de aire de los talleres, aulas, cafetería, oficina y laboratorios.

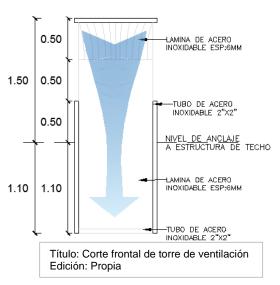
El hall ubicado entre dos bloques permite el ingreso del viento con mayor fuerza, para distribuirlo a los talleres, la ubicación de las ventanas a cada extremo permite distribuir el aire en toda el área del taller, además la teatina refuerza la renovación del aire.




En el caso de la cocina, la salida del aire caliente se da mediante un extractor que llega al techo mediante un ducto.

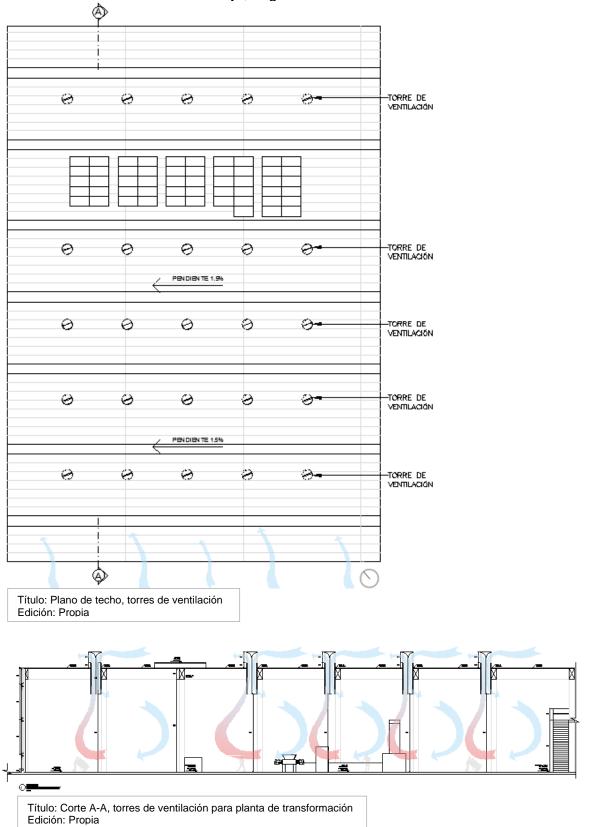

La ubicación de las ventanas al inferior y superior de los niveles permite la renovación del aire y la salida del aire caliente al exterior.



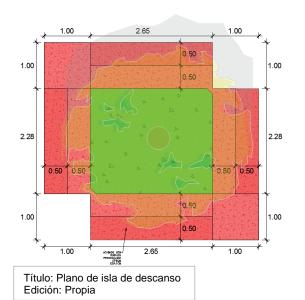


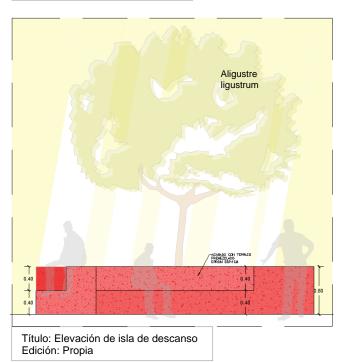
i. Torres de ventilación

Por las características de la planta de tratamiento se propone utilizar torres de ventilación para renovar el aire al interior de la planta. Las torres de ventilación permiten capturar el aire desde el techo y direccionarlo al interior de la planta, permitiendo la renovación de aire caliente por aire frio.



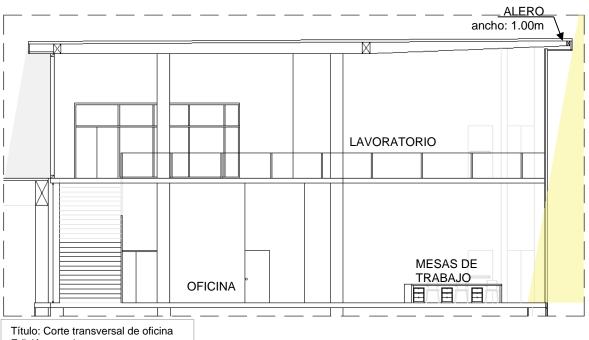
Las torres de ventilación deben estar orientadas al viento a 70° y ancladas a la estructura del techo cada 6.00 x 7.00 m a eje, llegando a ser un total de 25 torres de ventilación.





j. Espacios de sombra

En el espacio público se consideraron espacios de sombra y descanso, las cuales cuentan con un árbol que proporciona sombra y frescura, se propone utilizar el árbol Aligustre ligustrum por ser un árbol pequeño de copa densa que puede alcanzar hasta los 4m de altura, requiere riego moderado y tiene poca exigencia de suelo y luz. (SERPAR, 2016, pág. 40)


	FICHA TECNICA DE ARB	OL
Nombre científico	Ligustrum sp.	14/14/16
Flores	Pequeñas, blancas y fragantes	
Fruto	Baya negra no comestible	A STATE OF THE STA
Altura	6 metros	
Características	Rapido crecimiento, de copa densa. Se adapta a todo tipo de suelo, mejor desarrollo en terrenos frescos y arenosos.	
Cuidado		
Riego	Requiere de riego abundante durante el crecimiento y moderado en pleno desarrollo	
Poda	A inicios de primavera o principios de otoño, nunca podar en invierno.	
Fitopatologias y	enfermedades	A STATE OF THE PARTY OF THE PAR
Enfermedades	Manchas y moteadas en las hojas, tratamiento con cobre o con dictiocarcabamatos.	
Plagas	Pulgones, cochinillas y orugas. Pulverizar las hojas cuando se visualizen las primeras hojas enrrolladas.	

Título: Ficha técnica de árbol.

Edición: https://es.slideshare.net/USB_DIPLOMADO/guia-de-arboles-en-la-ciudad-de-lima

k. Alero

Se ubicó un alero aligerado de 1.00 m en la fachada de la oficina, con cobertura de aluminio compuesto, para fines del proyecto se consideró la incidencia solar en verano, en el horario de 1:30 a 2:30, la cual cae a la superficie en un Angulo de 80°.

Edición: propia

4. Arquitectura

El Centro de Reciclaje cuenta con 3 bloques generales, en el primer bloque se encuentra la planta de tratamiento de residuos, en el segundo bloque están las áreas administrativas y de investigación, el tercer bloque es de servicios comunes que se compone por talleres y cafetería, los tres boques están conectados mediante un puente central.

En el espacio público encontraremos la zona de segregación de residuos, recicla, zona de mitigación y zona de concientización.

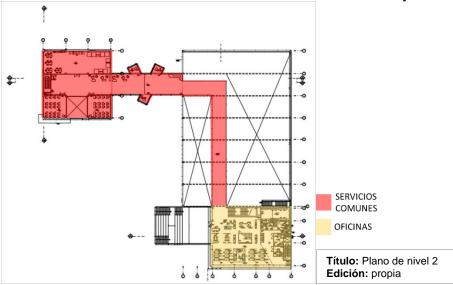
4.1. Nivel 1:

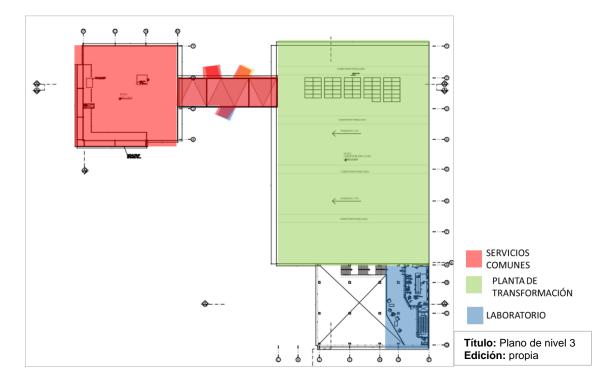
En el nivel +0.15m están ubicados la zona de tratamiento de residuos sólidos con acceso directo a la Av. Pedro Huilca mediante dos carriles de 6 metros cada una y una caseta de control, el despacho de los residuos tratados se realiza por una segunda salida de conexión directa con la calle Solidaridad, este acceso también es utilizado por el área de maquinarias compartidas.

En cuanto al área de segregación de residuos se accede mediante la Av. Pedro Huilca pasando por una caseta informativa, también se cuenta con estacionamientos exteriores para autos y bicicletas ubicados frente a la zona de restauración.

El primer nivel del bloque de servicios comunes están los talleres con acceso desde la calle 3, en dicha zona se encuentran los servicios higiénicos, Además de una cafetería con acceso desde el exterior.

En este nivel conectado con el espacio público están ubicadas las herramientas de concientización y participación ciudadana.

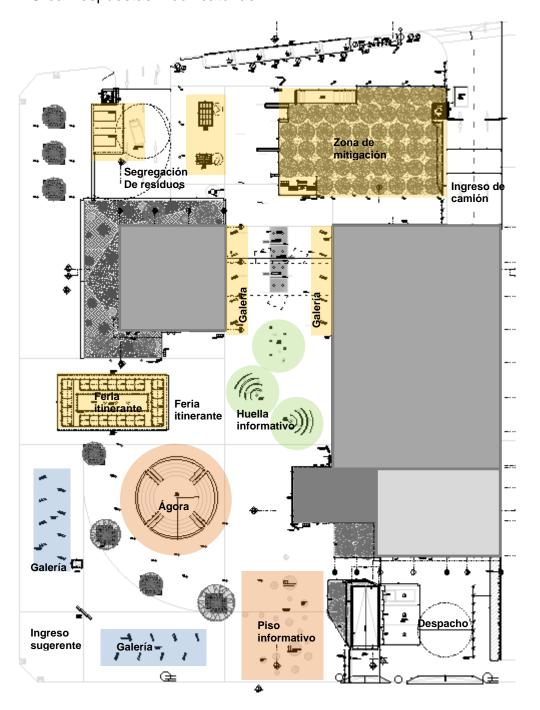

Título: Plano de nivel 1 **Edición:** propia


4.2. Nivel 2:

En el nivel +5.15m en el bloque de servicios comunes se ubican los talleres para capacitación, conectado con un puente donde se ubica la sala de usos múltiples con cubículos personales, pasando por una vitrina donde se puede visualizar todo el proceso de transformación de residuos, en esta zona también está ubicada la sala de monitoreo, además de la zona de oficinas flexibles con doble altura y acceso al tercer nivel.

4.3. Nivel 3:

En el nivel +10.15m se ubica el laboratorio de innovación y tecnología. En el techo terminado de la planta de transformación se encuentran ubicados los paneles solares.

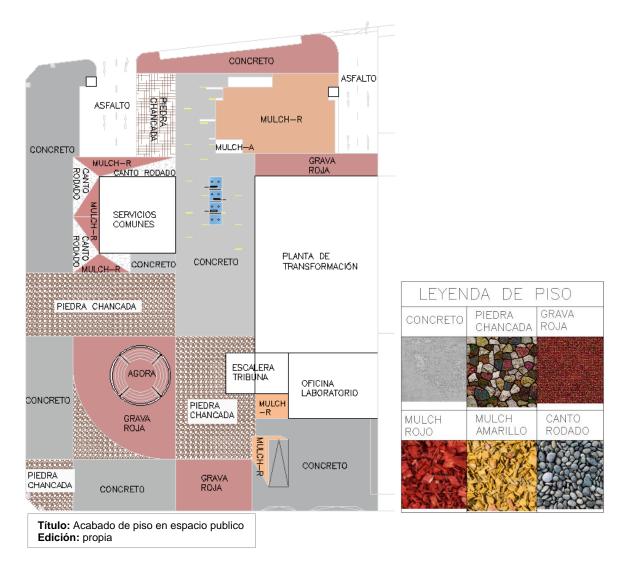

5. Espacio público

5.1. Criterio de ubicación de actividades

La ubicación de los elementos se realizó de acuerdo a los pasos de concientización definidos en la investigación, ubicados estratégicamente con el fin de guiar a los visitantes por cada zona.

Leyenda:

- Enfrentar la realidad
- Analizar, investigar, objetivar, organizar y buscar el origen de los hechos
- Explicar, integrar y sintetizar la realidad
- Crear respuestas modificatorias



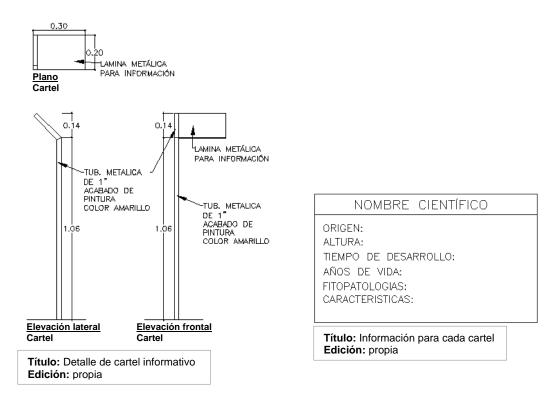
5.2. Acabado de piso

Para el acabado de pisos del espacio público se utilizó principalmente la piedra, por su alta resistencia y poco mantenimiento, además del mulch en todas las áreas verdes y concreto como elemento adicional.

El piso se definió principalmente por las actividades realizadas en el espacio público y las líneas mediante los ejes de la edificación.

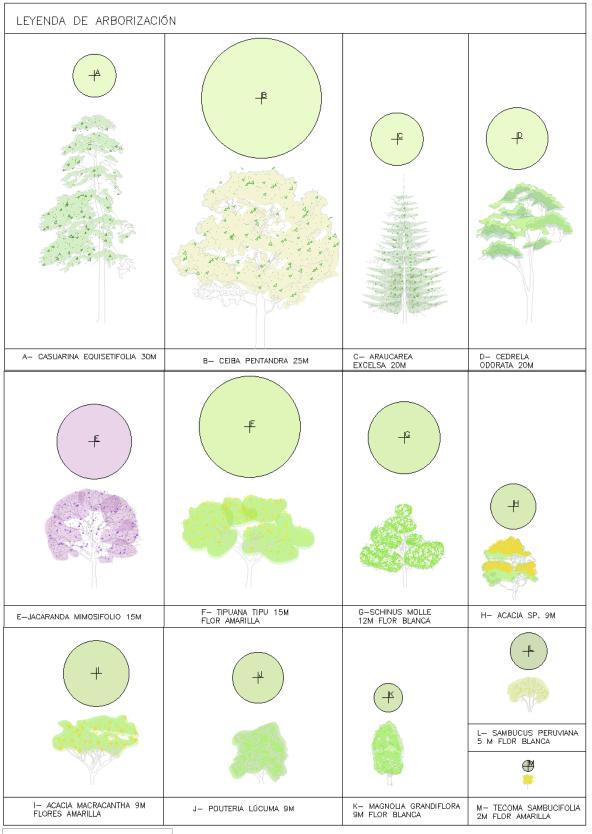
5.3. Zona de mitigación

La zona de mitigación tiene un área de 752m², la cual cuenta con una superficie cubierta por mulch y por 47 árboles ubicados cada 4m a eje, los arboles seleccionados son nativos e introducidos de excelente desarrollo en Lima, la principal característica es que necesitan poco mantenimiento y son xerófilos, es decir que necesitan poca agua.


El objetivo de la zona de mitigación es educar a las personas sobre los tipos de árboles y sus características, tiempo de crecimiento, entre otros.

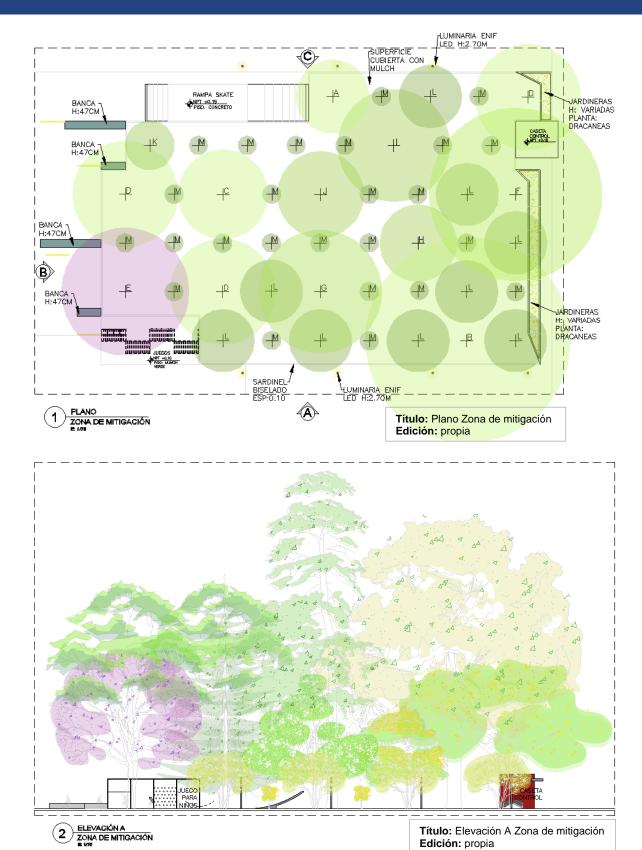
a. Cartel informativo

Para facilitar la accesibilidad de información, cada árbol contará con un cartel informativo.



b. Arborización

Para ubicar los diferentes tipos de árboles se consideró la altura y dimensiones de la copa, además de ubicar los arboles de copa más densa en lugares que necesitan sombra, En el caso de los arboles más grandes se consideraron pocos ejemplares en comparación a los más pequeños para disminuir el encuentro entre las copas.



Título: Codificación de arboles **Edición:** propia



6. Vistas 3d

7. CONCLUSIONES Y RECOMENDACIONES GENERALES

- El diseño del Centro de reciclaje está enfocado en mitigar el uso de recurso naturales mediante el reciclaje de madera, además invita a la participación activa de los ciudadanos en la segregación de residuos y la concientización sobre el medio ambiente
- 2. Se propusieron espacios que brinden servicios comunes a los talleres con el fin de lograr una mejora continua en el Parque Industrial de Muebles.
- En el espacio exterior se utilizaron herramientas didácticas de enseñanza participativa, para lograr el aprendizaje y concientización del reciclaje y principalmente de la madera.
- 4. Debido a la ubicación del proyecto el cual no presenta climas extremos, presenta un clima semi-cálido, permite aplicar estrategias pasivas convencionales para el control de incidencia solar en verano y captura de calor en invierno.
- 5. Debido a la ubicación, en invierno la mayor incidencia solar cae a la superficie en 60° lo que nos permite capturar el calor mediante vanos, en el caso de verano el sol cae a la superficie en 80° lo que permite utilizar el techo como protección de calor.
- 6. Con respecto a la ventilación, los vientos predominantes provienen del suroeste, el cual fue aprovechado mediante vanos y torres de ventilación para renovar el aire en las áreas interiores.
- 7. Por las características industriales de la planta, siendo básicamente un espacio cerrado en su perímetro, se propusieron alternativas que utilizan la superficie del techo para obtener iluminación y ventilación natural.
- 8. Es importante aplicar programas integrados de gestión de residuos y planes sobre prácticas sostenibles enfocados en las empresas y talleres del Parque Industrial de Villa el Salvador, esto puede ir de la mano con incentivos que promuevan el reciclaje.

XII. REFERENCIAS BIBLIOGRÁFICA

- CMMAD (Comisión Mundial del Medio Ambiente y del Desarrollo) (1988). Nuestro futuro común.
- Madrid, Alianza Editorial.
- Jawahir, Bradley. (2016). Technological Elements of Circular Economy and the Principles of 6R-Based Closed-loop Material Flow in Sustainable Manufacturing. *ELSEVIER*.
- Adenauer. (2016). Energías Renovables. Lima: Conexióncop.
- Aranda y Zabalza. (2010). *Ecodiseño y análisis de Ciclo de Vida.* España: Prensas Universitarias de Zaragoza.
- ARC . (mayo de 2019). *Amager ressource center* . Obtenido de https://www.a-r-c.dk/affald-til-ressourcer#/voresrolle/viindpasservoresenergiefterbehovet
- ARC. (2018). ARC Amager Ressource Center. Obtenido de https://www.a-r-c.dk/om-arc/presse/carbon-capture
- Ardila. (2003). Calidad de Vida: Una definición Integradora. *Revista latinoamericana de Psicología*, Volumen 35 N°2 161-164.
- Ayres. (2001). A Handbook for Industrial Ecology, 2nd edition. Northampton: Edward Elgar.
- Beatriz, G. (2011). Percepción del riesgo de salud por contaminación ambiental en la Urbanización Terrazas del Este, Sector Cloris Guarenas. Obtenido de ReaserchGate: https://www.researchgate.net/publication/235768891_Percepcion_del_riesgo_de_salud_p or_contaminacion_ambiental_en_la_Urbanizacion_Terrazas_del_Este_Sector_Cloris_Guarenas
- Benavides, M., & La Rosa, G. (Julio de 2000). *Repositorio CEPAL*. Obtenido de https://repositorio.cepal.org/bitstream/handle/11362/31498/S0008702_es.pdf?sequence= 1&isAllowed=y
- Berthet, J. M. (enero de 2012). *Universidad Rafael Landivar*. Obtenido de http://biblio3.url.edu.gt/Tesis/2012/07/01/Mendoza-Jose.pdf
- Cardozo y Faletto. (1975). *Dependência e desenvolvimento na América Latina.* Rio de Janeiro: Zahar Editores.
- Carvalho. (1994). Les Amis de la Terre. L'écologie contre le chômese. Paris: Editions la Découverte.
- Castillo. (2011). Politica económica: crecimiento económico, desarrollo económico, desarrollo sostenible. España: Revista Internacional del Mundo Económico y del Derecho.
- CeroCo2. (2020). Cero Co2. Obtenido de https://www.ceroco2.org/calculadoras/electrico
- Cervantes. (2009). Ecología industrial y desarrollo sustentable. México: Ingenieria Uady.
- CMMAD. (1987). *Universitat Politecnica de Valencia*. Obtenido de http://www.upv.es/contenidos/CAMUNISO/info/U0506189.pdf
- Cyes. (s.f.). Los Hornillos. Obtenido de http://uteloshornillos.es/?page_id=34
- Cyes TV. (24 de junio de 2013). *Cyes TV*. Obtenido de https://www.youtube.com/watch?v=_B6IJzsI2cU
- Eco Center. (2017). *Eco Center*. Obtenido de https://www.eco-center.it/it/attivita-servizi/ambiente/impianti/impianto-di-termovalorizzazione-897.html
- Eritja. (1994). La Gestión de los residuos peligrosos en la comunidad Europea. Europa: Editor S.A. .
- Erkman y Ramaswamy . (2003). *Applied Industrial Ecology: A New Platform for Planning Sustainable Societies* . India: Aicra, cop.
- Estocolmo. (1972). Medioambiente Humano. I Conferencia de las Naciones Unidas.
- F. Turia. (s.f.). Corportación F. Turia. Obtenido de https://www.corpturia.com/residuo.html
- Fonam . (2007). *Infobosques* . Obtenido de http://infobosques.com/descargas/biblioteca/463.pdf fòrumambiental. (2007). *Guía para la ecoeficiencia* . Barcelona : Forum Ambiental .
- FSC. (2019). Forest Stewardship Counsil . Obtenido de Forest Stewardship Counsil : https://pe.fsc.org/es-pe/fsc-per
- FSC Perú. (Julio de 2020). FSC Perú. Obtenido de https://pe.fsc.org/es-pe/nuestroimpacto/datos-y-cifras
- Fundación Aquae. (2016). Fundación aquae. Obtenido de https://www.fundacionaquae.org/wp-

- content/uploads/2016/04/infografia_oxigeno.pdf
- Gadrey y Jany-Catrice. (2006). *The New Indicators of Well-Being and Development*. Palgrave: Houndmills.
- Galindo. (2011). Crecimiento Económico. Madrid: ICE.
- García, H. L. (2003). TEORIA DEL DESARROLLO SOSTENIBLE Y LEGISLACIÓN AMBIENTAL COLOMBIANA . REVISTA DE DERECHO.
- Gonzales. (2006). Contaminación. Venezuela: UPSM.
- Gyldholm, N. (2011). BIG. Obtenido de https://big.dk/#projects-gbs
- Gyldholm, N. (2011). BIG. Obtenido de http://www.big.dk/#projects-gbs
- Hermansen, C. (2010). BIG. Obtenido de http://www.big.dk/#projects-arc
- IMP. (19 de febrero de 2013). *Instituto metropolitano de planificación*. Obtenido de http://www.imp.gob.pe/images/Plan-Desarrollo-Lima-Metropolitana-2012-2025.pdf
- INEI. (Diciembre de 2019). INEI. Obtenido de Instituto Nacional de Estadística e Informática: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1704/libro.pdf
- INGEI. (2019). Inventario Nacional de Gases de Efecto Invernadero. Obtenido de https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/205176_P eru-BUR2-1-INGEI%202014-NIR%20PERU.pdf
- Kuznets. (1996). Modern Economic Growth. New Haven: Yale University Press.
- Ladurner. (2015). Ladurner Environment. Obtenido de http://www.ladurnerambiente.it/it/bolzano/
- Largo. (2009). SCRIBD. Obtenido de https://es.scribd.com/doc/15932239/Emisionescontaminantes
- Lawrence, L. C. (2008). *Universidad Central de Venezuela*. Obtenido de file:///C:/Users/pc/Downloads/Dialnet-LaConcientizacionDePauloFreire-4015700.pdf
- Lawrence, L. C. (2008). *Universidad Central de Venezuela*. Obtenido de file:///C:/Users/pc/Downloads/Dialnet-LaConcientizacionDePauloFreire-4015700.pdf
- Levine. (1997). Financial Development and Economic Growth: Views and Agenda. Ee.uu: Journal of Economic Literature.
- LíneaVerde. (2015). Los contaminantes atmosféricos. Obtenido de http://www.lineaverdemunicipal.com/consejos-ambientales/los-contaminantesatmosfericos.pdf
- López, L. M. (2015). El Estudio y Guía Metodológica sobre Ciudades Inteligente. España: ONTSI
- Marian Arnold, Norma Dolores. (1981). *Aspectos básicos sobre parques industriales para regiones en desarrollo*. México: Universidad de Sonora .
- Mastrangelo. (2009). *Análisis del concepto de Recursos Naturales*. Argentina: Ambiente & Sociedade.
- Melgarejo, M. A. (2017). Repositorio de la Universidad Nacional Agraria. Obtenido de http://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/3686/melgarejo-quijandria-miguel-angel.pdf?sequence=1&isAllowed=y
- Ministerio de Salud. (02 de Mayo de 2014). *Análisis de Situación de Salud 2012*. Obtenido de http://bvs.minsa.gob.pe/local/MINSA/3358.pdf
- Ministerio del Ambiente . (2010). *Hhv*. Obtenido de http://www.hhv.gob.pe/pdf/ecoeficiencia.pdf Mogrovejo. (2010). *Desarrollo: Enfoques y Dimensiones*. HEGOA.
- MOPTMA. (1993). Medio Ambiente en España. Madrid: Serie memorias.
- National Geographic . (2020). Obtenido de
 - https://www.nationalgeographic.com.es/naturaleza/grandes-reportajes/animales-peligro-extincion_12536
- OEFA. (2014). Fiscalización Ambiental en Residuos Sólidos. Lima: OEFA.
- Ortega. (2013). Teoría del Desarrollo Sostenible . Desarrollo Ambiental.
- Osinergmin . (04 de Mayo de 2019). Osinergmin . Obtenido de
 - https://www.osinergmin.gob.pe/Tarifas/Electricidad/PliegoTarifario.aspx?Id=150000
- Ramirez, Y. A. (2018). Repositorio URP. Obtenido de
 - http://repositorio.urp.edu.pe/bitstream/handle/URP/1662/TESIS-
 - YVONNE%20ORDERIQUE%20RAMIREZ.pdf?sequence=1&isAllowed=v

- Raymond P., E. Cohen-Rosenthal b. (2016). Designing eco-industrial parks: a synthesis of some experiences. *ScieneDirect*.
- Rey, M. W. (2012). Consideraciones bioclimáticas en el diseño arquitectónico: El caso peruano. Lima: Pontificia Universidad Católica del Perú.
- Sánchez. (2010). La comprensión de conceptos de ecologia y sus implicaciones para la educación ambiental. España: Eureka.
- Senamhi. (2020). Senamhi. Obtenido de https://www.senamhi.gob.pe/?p=mapa-climatico-del-peru
- SERPAR. (2016). Obtenido de https://www.academia.edu/27845216/Libro_Arboles_de_Lima Søndergaard, I. A. (2019). *ramboll*. Obtenido de https://dk.ramboll.com/projects/rme/copenhill Sydhavn Genbrugscenter. (2018). *Sydhavn Genbrugscenter*. Obtenido de https://sydhavngenbrugscenter.kk.dk/artikel/aabningstider
- Tirado . (2004). Una aproximación a la economía del medio ambiente, Col·lecció materials didàctics, nº 108. España: Universitat de lesIlles Balears.
- UCLM. (2012). Conceptos Generales de la Tecnología. España: UCLM.
- Valdés. (2000). Medio Ambiente. Chile: Universidad de Chile.
- Vega, V. (20 de Mayo de 2014). Obtenido de https://www.archdaily.pe/pe/02-362795/planta-de-tratamiento-de-desechos-a-energia-en-bolzano-cl-and-aa-architects
- Ventura. (2015). El Orden Mundial . Obtenido de https://elordenmundial.com/2015/01/09/introduccion-al-concepto-de-desarrollo/
- Villazante. (2016). *Tipos de Contaminación*. España: Dialnet. WBCSD. (1992). *Changing Course*.
- White. (1994). The greening of industrial ecosystems. Washington DC: National Academy Press.
- Zamberlan, M. (2017). *Eku*. Obtenido de http://www.eku.it/catalogo/soluzioni-eku-per-termovalorizzatore-bolzano/
- Zerpa, J. C. (2016). *Ecología industrial: Una disciplina para el desarrollo sostenible en las industrias.* Venezuela: Universidad de Los Andes.

IX. ANEXOS

1. Matriz de Problemática

Síntoma General	Causa	Pronóstico	Control
El P.I. de muebles del distrito de Villa el Salvador, no se	No se concibe la ecología industrial con enfoque a	El parque industrial seguirá contribuyendo	Replantear los procedimientos
desarrolla de manera	la sostenibilidad.	con el agotamiento de	industriales.
sostenible.		los servicios y bienes	
		naturales.	
Problema general: ¿Cómo la ec	ología industrial conlleva al	desarrollo sostenible en el f	Parque Industrial de
Muebles?			
Objetivo general: Analizar como	la ecología industrial conlle	va al desarrollo sostenible e	en el Parque Industrial de
Muebles.			
Hipótesis general: La ecología i	nductrial as fundamental per	a lograr un desarrolle socto	nible on al Parqua
Industrial de Muebles.	ndustriai es iundamentai par	a lograr un desarrono soste	mble en el Parque
muusmai de Muebies.			
Síntomas Secundarios	Causa	Pronóstico	Control de Pronóstico
Hay pocas oportunidades de	Deficiencia en el	No habrá un crecimiento	Tener un adecuado
incremento en el crecimiento	metabolismo industrial.	económico sostenible en	manejo del
económicos con enfoque		el Parque Industrial de	metabolismo industrial.
sostenible en el Parque		Muebles.	
Industrial de Muebles.			
	Por qué un adecuado metabo	olismo industrial incrementa	el crecimiento
económico en el Parqu	e Industrial de Muebles?		
	como el eficiente manejo del	metabolismo industrial incre	ementa el crecimiento
económico en el Parque Indust	rial de Muebles.		
Hipótesis: El eficiente manejo de	el metabolismo industrial be	neficia el crecimiento econó	mico en el Parque
Industrial de Muebles.			
El P.I. no incentiva la	No se toman medidas de	La contaminación	Medidas de prevención
reducción significativa en la	ecoeficiencia.	ambiental seguirá	de la contaminación es
cantidad de emisiones		aumentando y habrá una	un factor fundamental
contaminantes en el medio		baja calidad de aire.	para reducir la
ambiente.			contaminación.

Problema específico: ¿Como las **medidas de ecoeficiencia** reducen las **emisiones contaminantes** en el medio ambiente?

Objetivo específico: Analizar como las **medidas de ecoeficiencia** reducen las **emisiones contaminantes** en el medio ambiente.

Hipótesis: El uso de las **medidas de ecoeficiencia** es indispensable para lograr la reducción de **emisiones contaminantes** en el medio ambiente.

Bajos niveles de la calidad de	Deficiente control de la	El cambio climático y el	Realizar una adecuada
vida en el Parque Industrial de	gestión de residuos	deterioro de la capa de	gestón de los residuos.
Muebles.	industriales en el	ozono, comprometerá	
	Parque Industrial de	totalmente la calidad de	
	Muebles.	vida.	

Problema específico: ¿De qué forma la gestión de residuos industriales interviene en el incremento de la calidad de vida del Parque Industrial de Muebles?

Objetivo específico: Analizar de que forma la **gestión de residuos industriales** interviene en el incremento de la **calidad de vida** del Parque Industrial de Muebles.

Hipótesis: La gestión de residuos eleva significativamente la calidad de vida en el Parque Industrial de Muebles.

2. Matriz de indicadores

¿Cómo la ecología	¿Cómo la ecología industrial conlleva al desarrollo sostenible del Parque Industrial de Muebles?					
¿Cómo el	- costo monetario	¿Cada cuánto tiempo compra madera para el proceso de fabricación?				
metabolismo	de la madera	(Responsable de empresa)				
industrial influye	- cantidad en	¿Cuánto es el promedio del costo (S/.) mensual de la madera adquirida para el				
en el	volumen de	proceso de fabricación de muebles, incluido el transporte? (Responsable de				
crecimiento	residuos	empresa)				
económico en el	(industria/mes)	¿Cuánto es el volumen semanal de residuos como producto del proceso de				
Parque		fabricación? (Responsable de empresas)				
Industrial de	-Cantidad en	¿Cuánto es el volumen mensual de la madera adquirida para el proceso de				
Muebles?	volumen de	fabricación de mueble? (Responsable de empresa)				
	madera					
¿Cómo las	-Volumen	¿Cuánto es el promedio de consumo energético en la Zona Industrial de muebles				
medidas de	Reciclado	en el distrito de Villa el Salvador, en los últimos 6 meses? (Edel Sur)				
ecoeficiencia	-Tiempo promedio	¿Cuánto es el costo promedio del consumo de servicio de luz eléctrica, en la				
reducen las	estimado de	fábrica? (responsable de empres)				
emisiones	Durabilidad del	¿Qué aditivos utilizan en el proceso de fabricación de los muebles? (trabajadores)				
contaminantes	producto	¿Reutilizan los residuos? SI NO				
en el medio	(industria /mes)	¿Qué cantidad de volumen de residuos reutilizan? ¿De qué manera reutilizan los				
ambiente?		residuos? (trabajadores)				

		¿Qué tipos de madera utilizan para la fabricación de los muebles? (Responsable de empresa)
		¿Cuánto es el promedio de tiempo de uso de un mueble en el hogar?
		(compradores)
	-Cantidad Polvo	(ministerio ambiente Especialista)
	atmosférico	¿Cuánto es la cantidad de Polvo atmosférico en la Zona Industrial de Muebles?
	-Cantidad	¿Cuánto es la cantidad de contaminantes gaseosos en la Zona Industrial de
	Contaminantes	Muebles?
	gaseosos	¿Cuánto es la cantidad de contaminantes sólidos en la Zona Industrial de
	(Ministerio del	Muebles?
	ambiente)	
	-Cantidad de	
	contaminantes	
	solidos	
¿De qué forma	-Volumen	¿Qué cantidad de volumen de residuos es recogido semanalmente en la Zona
la gestión de	Recogido	Industrial de Muebles? (Municipio)
residuos	-Metro lineal	¿Cuántas unidades de transporte se necesitan semanalmente para el recojo de
industriales	recorrido	residuos en la Zona Industrial de Muebles? (Municipio)
interviene en el	-unidades de	¿El residuo recogido, es tratado? SI NO
incremento de la	Transporte	NO ¿En qué lugar se ubica la disposición final de los residuos recogidos en la
calidad de vida	-Volumen tratado	Zona Industrial de Muebles? (Municipalidad E)
en el Parque	-Volumen No	SI ¿Cuánto es el volumen tratado de los residuos recogidos en la Zona Industrial
Industrial de	tratado	de Muebles? (Municipalidad E)
Muebles?	(industria / mes)	¿Dónde se ubica la planta de tratamientos de los residuos? (Municipalidad E)
	-Unidad de	¿Su salud se ha visto afectada por el manejo de materiales tóxicos en el proceso
	Patologías	de fabricación de los muebles? (trabajadores)
	presentes.	¿Con que enfermedades se ha visto afectado, por el manejo de materiales tóxicos
		en el proceso de fabricación de los muebles? (trabajadores)
		¿Con que frecuencia se ha visto o se ve afectada su salud, por el manejo de materiales tóxicos en el proceso de fabricación de los muebles? (trabajadores)

3. Organizaciones certificadas FSC Perú

	INICIATIVAS DE CERTIFICACIÓN VOLUNTARIA							
L CER	TIFICACIÓN DE MANEJO FO	DRESTAL FSC FM/C	oc					
N*	Código de Certificado	N° de Licencia	Nombre de la Organización	Ubicación	Fecha de Emisión	Fecha de Expiración	EXTENSIÓN	Válido
1	NC-FM/COC-002175	FSC-C003999	Maderera Río Yaverija S.A.C (MADERYJA)	Madre de Dios	26/01/2007	14/02/2022	49,556.00	Válido
			Asociación para la Investigación y Desarrollo Integral - AIDER					
			Comunidad Nativa de Buenos Aires					
2	SCS-FM/COC-004384	FSC-C008155	Comunidad Nativa de Callería	Ucayali	16/11/2005	19/07/2021	25,456.00	Válido
			Comunidad Nativa de Junín Pablo					
			Comunidad Nativa de Nuevo Loreto					
			Comunidad Nativa de Roya					
			Maderera Río Acre S.A.C (MADERACRE)*		26/01/2007	25/01/2022	220,844.56	Válido
3	NC-FM/COC-002176	FSC-C017050	Amatec	Madre de Dios				
	NO THIS COO COLLING	130 0017030	Maderacre S.A.C					
			Paujil					
			Ambiente y Desarrollo de las Comunidades del Perú			2011 7/02/2021	94,508.45	Válido
4	NC-FM/COC-005336	FSC-C102381	Comunidad Nativa Bélgica	Madre de Dios	8/02/2011			
			Maderera Industrial Isabelita S.A.C					
5	NC-FM/COC-005476	FSC-C104253	Green Gold Forestry Perú S.A	Loreto	18/01/2011	4/04/2022	56,946.88	Válido
6	SGS-FM/COC-008465	FSC-C104536	Forestal Otorongo S.A.C	Madre de Dios	3/02/2011	2/02/2021	81,238.00	Válido
7	NC-FM/COC-005485	FSC-C105960	Maderera Canales Tahuamanu S.A.C	Madre de Dios	31/05/2011	29/09/2020	52,869.00	Válido
8	SGS-FM/COC-800000	FSC-C138554	Inversiones Forestales Chullachaqui S.A.C	Madre de Dios	10/11/2017	9/11/2022	101,777.00	Válido
9	CU-FM/COC-847659	FSC-C136181	Nuevo San Martín S.A.C	Ucayali	29/06/2017	28/08/2022	313,430.68	Válido
10	SCS-FM/COC-006489	FSC-C143638	Pur Development Pte. Ltd.		26/03/2019	25/03/2024	294.82	Válido
11	NC-FM/COC-056757	FSC-C152358	Empresa Forestal Live Wood E.I.R.L	Ucayali	26/02/2020	25/02/2025	59,206.01	Válido
1,058.127.40							1,056,127.40	

B. MADERA CONTROLADA CW/FM								
N°	Código de Certificado	N° de Licencia	Nombre de la Organización	Ubicación	Fecha de Emisión	Fecha de Expiración	EXTENSIÓN	Válido
- 1	RA-CW/FM-007511	FSC-C130393	Ecoforestal Ucayali S.A.C	Ucayali	2/09/2016	1/09/2021	48,515.68	Válido
2	NC-CW/FM-007784	FSC-C138443	Consorcio Maderero S.A.C CCNN Nuevo Canchahuaya	Loreto	23/11/2017	23/11/2022	13,874.90	Válido
3	NC-CW/FM-007901	FSC-C141906	Consorcio Maderero S.A.C (Zona Santa Catalina)	Loreto	22/07/2018	22/07/2023	23,049.00	Válido
							85,439,58	

	C. CADENA DE CUSTODIA COC							
N°	Código de Certificado	N° de Licencia	Nombre de la Organización	Ubicación	Fecha de Emisión	Fecha de Expiración	Válido	
-1	NC-COC-007214	FSC-C125487	Inversiones La Oroza S.R.L	Loreto	26/05/2015	26/05/2021	Válido	
2	NC-COC-007264	FSC-C125796	Agroindustria Catahua S.A.C	Madre de Dios	13/08/2015	13/08/2020	Válido	
3	CU-COC-844619	FSC-C128583	Papelera Alfa S.A	Lima	15/01/2016	14/01/2021	Válido	
4	CU-COC-844683	FSC-C130471	Forsac Perú S.A.C	Lima	30/05/2016	29/05/2021	Válido	
5	NC-COC-007470	FSC-C131040	Industria Forestal Huayruro S.A.C	Ucayali	7/07/2016	6/07/2021	Válido	
8	NC-COC-007536	FSC-C131631	Grupo Vargas Negocios Amazónicos S.A.C	Ucayali	10/10/2016	10/10/2021	Válido	
7	NC-COC-007544	FSC-C131695	Inversiones Valentina y Nathaly S.A.C	Ucayali	20/10/2016	20/10/2021	Válido	
8	NC-COC-007607	FSC-C132454	Consorcio Maderero S.A.C	Loreto	1/02/2017	1/02/2022	Válido	
9	CU-COC-849115	FSC-C133297	Grupo Maderero Amaz S.A.C	Lima	12/12/2016	14/12/2021	Válido	
10	CU-COC-849518	FSC-C133809	E&T Forestal S.A.C	Madre de Dios	18/01/2017	17/01/2022	Válido	
11	SGSCH-COC-010938	FSC-C133973	Convertidora del Pacífico E.I.R.L	Lima	31/01/2017	30/01/2022	Válido	
12	DNV-COC-001902	FSC-C001614	CellMark Perú S.A.C		20/04/2008	27/11/2024	Válido	
13	CU-COC-811449	FSC-C001713	Peru Green Designs S.A.C	Lima	16/09/2009	18/02/2025	Válido	
14	SGSCH-COC-002228	228 FSC-C002646	Maderera Bozovich S.A.C	Lima	22/08/2005	21/02/2021	Válido	
14	3G3CH-COC-002228	FSC-C002646	Foaming Sea S.A.C	Lima	22/00/2000		valido	
15	NC-COC-002189	FSC-C003290	Maderera Río Acre S.A.C (CoC)	Lima	5/02/2007	4/02/2022	Válido	
			E&J Matthei Maderas del Perú S.A.		24/06/2009	8/08/2024		
16	NC-COC-004164	FSC-C003499	Agroindustrial Puerto Maldonado S.A.C (APM) - C	Lima			Válido	
10	NC-COC-004104	<u>F3C-C003499</u>	Planta Industrial	Lima	24/00/2008	0/00/2024	valiou	
			Secado de Madera	1				
17	CU-COC-810564	FSC-C005525	Maderera Rio Yaverija S.A.C	Madre de Dios	14/10/2008	2/10/2023	Válido	
18	NC-COC-002413	FSC-C014047	Tetra Pak Ltda (Perú)		11/08/2007	10/08/2022	Válido	
10	NO-000-002415	F3C-C014047	Tetra Pak S.R.L (Bolivia)		11/00/2007	10/00/2022		
19	SGSCH-COC-002816	FSC-C017922	Forestal Otorongo S.A.C	Madre de Dios	19/09/2006	18/09/2021	Válido	
20	SGSCH-COC-007588	FSC-C084472	Industria Gráfica Cimagraf S.A.C	Lima	29/04/2010	28/04/2025	Válido	
21	NC-COC-005426	FSC-C105000	Antalis Perú S.A	Lima	18/04/2011	20/04/2021	Válido	
22	CU-COC-816542	FSC-C104412	Industrias del Envase S.A	Callao	26/01/2011	22/01/2021	Válido	
23	CU-COC-813081	FSC-C108179	Quad Graphics Perú S.A	Lima	20/10/2011	7/12/2021	Válido	
24	CU-COC-818377	FSC-C108203	Metrocolor S.A	Lima	21/10/2011	19/10/2021	Válido	
25	CU-COC-820222	FSC-C111626	Impresso Gráfica S.A	Lima	22/06/2012	28/08/2022	Válido	

26	CU-COC-818918	FSC-C113288	Amauta Impresiones Comerciales S.A.C	Lima	22/10/2012	20/12/2022	Válido
27	CU-COC-826960	FSC-C114508	Perú Offset Digital S.A.C	Lima	23/01/2013	3/05/2023	Válido
28	SCS-COC-004537	FSC-C115784	Centro de Transformación e Innovación Tecnológica Indígena S.R.L	Ucayali	29/03/2013	28/03/2023	Válido
29	CU-COC-833647	FSC-C123427	Sociedad Importadora S.A	Lima	28/11/2014	6/10/2024	Válido
30	NC-COC-007096	FSC-C123626	Gráfica Biblos S.A	Lima	12/12/2014	24/05/2024	Válido
31	SGSCH-COC-010374	FSC-C123885	Cecosami S.A	Lima	7/01/2015	6/01/2025	Válido
32	CU-COC-853433	FSC-C138707	Concesión Sepahua S.A.C	Ucayali	6/12/2017	5/12/2022	Válido
33	NC-COC-007938	FSC-C140165	Olmos Carbón S.A.C Derivados del Carbón E.I.R.L Molinos de Carbón E.I.R.L	Lima	13/09/2018	13/09/2023	Válido
34	SGSCH-COC-800001	FSC-C140196	Peruana de moldeados S.A.	Callao	23/02/2018	22/02/2023	Válido
35	CU-COC-858403	FSC-C140919	Maderera Industrial Isabelita S.A.C	Madre de Dios	2/05/2018	1/05/2023	Válido
36	SGSCH-COC-800006	FSC-C144326	Schroth Corporación Papelera S.A.C	Lima	31/10/2018	30/10/2023	Válido
37	NC-COC-055106	FSC-C148139	MADERACRE Timber S.A.C	Lima	20/05/2019	20/05/2024	Válido
38	SGSCH-COC-800017	FSC-C148368	SML Perú S.A.C	Lima	3/05/2019	2/05/2024	Válido
39	CU-COC-865682	FSC-C148893	Amaz Home S.A.C	Lima	27/05/2019	26/05/2024	Válido
40	CU-COC-863250	FSC-C146283	Micalay Sociedad Anonima Cerrada	Madre de Dios	30/01/2019	29/01/2024	Válido
41	SGSCH-COC-800019	FSC-C149777	Comercializadora Napa Trading S.A.C	Lima	28/06/2019	27/06/2024	Válido
42	CU-COC-867994	FSC-C154606	Formas Universales S.A.C	Lima	15/01/2020	14/01/2025	Válido
43	NC-COC-057825	FSC-C155634	Softys Perú		10/03/2020	9/03/2025	Válido
44	CU-COC-870406	FSC-C156243	Maderera Tumi S.A.C	Lima	1/04/2020	31/03/2025	Válido
45	CU-COC-808773	FSC-C156280	Cofaco Industries S.A.C	Lima	2/04/2020	1/04/2025	Válido
46	SGSCH-COC-800033	FSC-C156283	Gastegraf S.A.C	Lima	2/04/2020	1/04/2025	Válido
47	NC-COC-055490	FSC-C151453	Consorcio Forestal Loreto S.A.C	Loreto	16/09/2019	16/09/2024	Válido
48	SGSCH-COC-800025	FSC-C152948	Enotria S.A.	Lima	7/11/2019	6/11/2024	Válido
49	SGSCH-COC-800027	FSC-C154175	Wayra Impresión Digital S.A.C	Lima	26/12/2019	25/12/2024	Válido
50	CU-COC-855091	FSC-C156866	Comercial Maderera Andina S.R.Ltda	Lima	24/04/2020	23/04/2025	Válido
51	NC-COC-060959	FSC-C157881	Agroindustria Forestal Santa Teresa E.I.R.L	Madre de Dios	2/07/2020	21/07/2025	Válido

4. Formato de encuesta aplicada en la investigación

Encuesta dirigida a respon	nsables de cada empresa ind	lustrial	
Empresa:			
Responsable:			
Numero de trabajadores:			
Años de la empresa:			
Con respecto a la fabricac	ción		
MATERIA PRIMA			
¿Generalmente cada cuánt de fabricación?	o tiempo compra madera p	ara el proceso	
bimestral	Trimestral	M edio añ	0
otro:			
¿Cuánto es el volumen de fabricación?	la madera adquirida para el	proceso de	
2000 - 3000 PI	3000 - 4000 PI	4000 - m	ác PI
2000 - 3000 11	3000 - 4000 11	4000 - III	us 1 1
¿Cuánto es el promedio d de fabricación?	el costo por PI de madera a	dquirida para el p	proceso
de fabricación:			
S/.10-15	S/.15-20	S/.20- má	ís
¿Qué tipos de madera util	lizan para la fabricación?		
cedro	tornillo	chihuato	
Otros:			
¿La madera utilizada en el	proceso de fabricación son	ecologicos? Cert	ificación ecológica
3i	L No		
¿Qué productos complem	nentarios utilizan en el proc	eso de fabricació	n?
Barniz	Pintura	Cola	
Sellante	DD DD	Otros:	
	entarios utilizados en el pro	oceso de fabricaci	ón son ecologicos?
Si	∟ No		
PROCESOS			
	el total de productos que fa	ıbrican en un mes	?
10-30 u	30-50 u	50 - más u	
¿Aproximadamente cuánt de luz eléctrica en la fábr	o es el costo mensual del co	onsumo de	
de luz electrica en la fabr	ica?		
S/.150-250	S/.250-300	S/.300-m2	is
PEGIPIOG			
RESIDUOS		. d d . d . d	1. 6.1
1 saco	manal de residuos como pro	3 a más sa	
1 saco	2 sacos	3 a mas sa	cos
¿Reutilizan los residuos d	e la madera?		
si	no		
*Pasar a la siguiente preg	unta solo si la respues es SI		
	a de volumen de residuos re		
1 saco	2 sacos	3 a más sa	acos
D(. 1		
¿De qué manera reutilizar	i ios residuos !		

Encu	ıesta dirigida a tr	abajadores			
emp	resa:				
area	:				
¿Su s	alud se ha visto afecta	ada por los residuos del aserrín o	el ma	nejo de barniz o pinturas?	
] Si	☐ No		Nose	
¿Соп	que enfermedades se	ha visto afectado a causa del ma	nejo d	e dichos productos	
utiliz	ados en el proceso de	fabricación?			
	Alergias	Gripes		Tos	Bronqueos
	Asma	Bronquitis		Neumonia	Otros:
¿Соп	que frecuencia se ha	visto o se ve afectada su salud a	causa	del manejo de dichos produ	ictos
utiliz	ados en el proceso de	fabricación?			
	Nunca	Росо		Frecuentemente	Siempre
Encu	iesta dirigida a tr	abajadores			
emp	resa:				
area					
¿Su s	alud se ha visto afecta	ada por los residuos del aserrín c	el ma	nejo de barniz o pinturas?	
	Si	No		Nose	
	_				
¿Con	que enfermedades se	ha visto afectado a causa del ma	nejo d	e dichos productos	
	ados en el proceso de		J	P	
	Alergias	Gripes		Tos	☐ Bronqueos
Ē	Asma	Bronquitis		Neumonia	Otros:
; Con	que frecuencia se ha	visto o se ve afectada su salud a	causa	del maneio de dichos produ	ictos
	ados en el proceso de			J	
Т	Nunca	Poco		Frecuentemente	Siempre
Fncı	ıesta dirigida a tr	rahaiadores			
	resa:	abajaaores			
area					
arca	•				
; Su s	alud se ha visto afecta	ada por los residuos del aserrín c	el ma	neio de barniz o pinturas?	
] Si	No		Nose	
	<u> </u>			14030	
·Con	aua anfarmadadas sa	ha vieto afactado a causa dal me	noio d	a diabas productos	
	ados en el proceso de	ha visto afectado a causa del ma fabricación?	iicjo u	e dienos productos	
	Alorgias	Grinos	\Box	Tos	Propaugos
F] Alergias] Asma	Gripes Bronquitis	H	Tos	Otros:
] Asma	L DIOIIQUILIS		Neumonia	Otros:
·C	ana facana: -: 1	rioto o co via afa-tll l		dal manajo da 31-1 1	
	que frecuencia se ha ados en el proceso de	visto o se ve afectada su salud a	causa	uei manejo de dichos produ	ICLOS
acmZi	and on or proceso de	Inclination:			
	Nunca	Doca Doca		Erocuontomania	C: 0 mm := ::=
	Nunca	L Poco		Frecuentemente	└─ Siempre